
USER-DEFINED FUNCTIONS IN SMATH STUDIO

[rev.08 | 2016.12.08 | SS 0.98.6179]

Inline__functions

To define a function, type function's name and open a parenthesis "(", write the argument
name, move on the right of the closing parenthesis and then type the define operator ":".

x

13
xf x[1.1]

8.5f 2 <- type f and look at the dynamic assistance, you will find the
functiom name and his content.

IMPORTANT

type = to evaluate numerically 8.5f 2

2

17
f 2type CTRL+. to evaluate symbolically

evaluation can be changed by context menu:
1. right click on the math region
2. Optimization > [Symbolic/Numeric/None]

Like variables, functions are case sensitive, hence f(x)≠F(x)

[1.2] 3xF x

8.5f 2

5F 2

It is possible to define several functions with the same name, if they have a different
number of arguments.

[1.3] y3x2y3x2f , yx

8f , 21

8.5f 2 <- f(x) is still defined; if you look at the dynamic assistance,
2 items are available now, f(1) and f(2). The number shows the
arguments required by each function, whereas the name without
numbers is used when there is just one function (see [1.1])

It is possible to define again the function

1
2

xf x[1.4] Evaluable things such math regions are ordered in the canvas
from left to right and then from top to bottom, with reference
to the top-left corner of the region.3f 2

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

1 / 21

In SS a valid variable name cannot start with a number; it cannot contains whitespaces nor
the character used as argument separator in functions, as well as @ and the math symbols:
()[]{}+-/*=:≡<>≤≥≠¬&|¤±...

When you define a function, argument's name can be only: a variable name or a function;
units and empty operand can be used only as placeholders.

IMPORTANT

[1.5]

[A] i3baf 1 <- the name of an argument cannot be a number

i3baf 1.5 "Syntax is incorrect."lastError lastError contains the
last error detected up to
the point where it is used

if your intent is to define the value of a function in a point,
use an if statement, booleans or other functions

if

else
x2

10
2xf x x22x102xg x

3.8f 1.9 3.8g 1.9

10f 2 10g 2

4.2f 2.1 4.2g 2.1

[B] 4x3f x3 <- the variable name can contain numbers (not as 1st character)

6f 2

[C] 5_3f _3 <- any non-number character is allowed as first character

7f 2

[D] 6#3f #3 <- # is the character of the empty placeholder; to use it as 1st
character you have to type at least the one that will be the
2nd character, move back the cursor, and then you can type #
in front of it

8f 2

[E] 9xf <- dummy argument (argument not used in the function - will be
discussed later in [3.14])

x9f 2

[F] 7xf nothing <- dummy argument

x7f 2

g
5

π
3g 02f g x[G] <- a function is a valid argument

(will be further discussed from [3.10] to [3.13])

16.885F
5

π
3F 0216.885f F x

1.7634sin
5

π
3sin 021.7634f sin x

7.6234exp
5

π
3exp 027.6234f exp x

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

2 / 21

You can access variables from the canvas (not passed by the arguments), defined or even
not yet defined (from left to right and from top to bottom, see [1.4]).

[1.6] 5a

x3baf x <- hold the mouse over the function to see how "a" and "b"
are stored; you can do the same from the dynamic assistance

[A] 2b

13f 2

IMPORTANT

[B] 3b <- if a variable is not yet defined when you define the
function, it is kept as symbolical link (the name is stored);
hence if afterwards you change the value of the variable,
the function will returns a different result.

14f 2

IMPORTANT

[C] 10a <- if a variable is already defined when you define the
function, the value is stored; hence if afterwards you
change the value of the variable, the function will returns
always the same result.

14f 2

[1.7] G xF xf x <- this principle applies to anything in the right hand side of
assignments, even functions

G 14f 1

[A] 5F x

G 14f 1 <- the value of F(x) was stored as it was at f(x) definition,
thus when you change F(x) the new value is NOT used in f(x)

[B] x2G x

6f 1

[C] x3G x

7f 1 <- G(x) wasn't defined at f(x) definition, thus his name
is stored and when you change it the new content is used
in f(x)

You can use vectorize() to extend scalar logic to matrices/vectors elements avoiding the
use of loops; this can be done applying vectorize on you function or inside your function.

[1.8] 1xf x

321

321
M

f M "Argument must be scalar."lastError

210

210
f M <- the scalar logic is extended to any element of the matrix,

because requested by vectorize(...)

1f 2

1xf x[1.9]

210

210
f M <- the scalar logic is always extended to any matrix's element

1f 2

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

3 / 21

Dependent__variables

Like in paper-math you may want to have a function without explicit arguments: f xy

d

d t
x tẋ[2.1] 3x2y

[A] 2x

7y

[B] 3x

9y

2
d

d x
y[C] <- even if x is defined at the execution, y keeps the symbolical link

(look at the dynamic assistance and [1.5][B])

10d

2

0

xy

Like in functions, it is possible to use defined/undefinedvariables from the canvas.

[2.2] 5b

z2c5cbz2x <- hold the mouse over the variable to see how "b" and "c"
are managed: c was undefined and his name is stored,
b was defined and his value is replaced and stored.[A] 2c

z27x

[B] 4c

z29x

[2.3] G zdbx z3G z <- hold the mouse over the definition of x

[A] 3z 3d

17x d wasn't defined before x's definition
=> his name is stored
=> defining d with different values, you obtain

different results when you evaluate again x

[B] 2d

16x

[C] 2z

13x

[D] 3b b was defined before x's definition
=> his value (5) is stored in x
=> doesn't matter if you define b in another way13x

[E] z6G z G(z) was defined before x's definition
=> his value (3*z) is stored in x
=> doesn't matter if you define G(z) in another way13x

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

4 / 21

To make complex tasks, it is possible to use the line() function in the Right Hand Side.
This function and his block of statements applied right after the assignment operator is
called Procedure.
A procedure acts like a logical function (is fully evaluated anytime is called).
line() is available even in the "Programming" toolbox on the right side of the program.

Type an "argument separator" character to add a placeholder in the line.

[2.4]

a

7

9

a

a
a

3ax <- hold the mouse over the region to see how the procedure
is stored; as you can see the whole logic is kept in
memory, no replacements are made

<- The last placeholder is used to output
the result

1.863065x

[A] xv <- if the logic in the procedure doesn't
depends from outer variables, you can
speed-up calculations inside loops by
evaluating it at once before his
repetitive use, assigning the variable
to another one (even with the same
name)

1.863065x

[B] xx

1.863065x

What does it means here "doesn't depends from outer variables"?
When the procedure will be evaluated if a variable is not defined inside the procedure but
is available in the parent level, his value will be used.

[2.5]

ba

3ax

<- even if it is available in the canvas, "b" is an unknown
inside the procedure (not defined anywhere locally, is
a "local unknown")

[A] 4b

7x <- 3+4=7; "b" is used with his canvas' value

10a <- the canvas value of "a" is still the same

[B] 7b

10x <- 3+7=10; changing the value of b changes even the output
value of x

[C] xx <- store the value of x inside a new variable named x

100b

10x <- the dependancy from b is gone (see [2.4])

What if the local unknown is unknown even in the parent level?

[2.6]

wa

3ax w "w - not defined."lastError

0IsDefined w

w3x <- the local unknow is exposed to the canvas

xy <- in this case is even possible to partially evaluate x
and store it in a new variable (even "x") to speed up
further calculations; when some numerical function acts
on the unknown such evaluation it might be not possible
and the new variable will point
the original (y=x)

5w

8x

10w

13x <- as for [2.5], since "w" wasn't defined locally, the
current value will be used

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

5 / 21

Now let's go deeper; we know that a canvas value may be assigned (if available) to a
local unknow when the procedure is being evaluation, but in what point of our function the
canvas value is applied to our unknown when executed?

[2.7]

a

baa

20b

3bax <- "b" is unknown in the procedure

<- from this point on, "b" is known, his local value will
be used in following assignments

[A] 2b

25x <- (2+3)+20=25

2b <- the canvas value of "b" is still the same

[B] 100b

123x <- (100+3)+20=123

If line() is no more applied right after the definition operator, becomes a passive
wrapper for his content; anything will be immediatly evaluated

[2.8]

a

baa

20b

3bax
<- notice the + before the line(); a parenthesis will do

the same (or sys(), etc...)

<- last placeholder is still the output value

123a <- assignments made inside line() are
available on the canvas, as well as "x"

20b

123x

In a procedure you can rename a variable at once using the F8 key.

[2.9]

ca

c

b
aa

x <- move the cursor above a variable (i.e. a); you should see
all the occourrences of that item light-grayed

press the F8 key of your keyboard, aa cursor will appears
in each of them

navigate with the keyboard arrows, type the new name,
delete unwanted characters

use the escape key to go back to the normal mode (the same
can be addressed with a mouse click)

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

6 / 21

Programming__functions

Procedures can be used even to to make complex tasks in functions:

[3.1]

a

4x3af x <- x is an argument of f

<- The last placeholder is used to output values

10f 2

Arguments in programming functions are passed by reference, this means that an input
variable can be modified from inside the function when you use the assignment operator
(:=) to that variable inside the function

IMPORTANT

[3.2]

out

2
xout

1xxf x <- assignment operator applied to an input argument (x:=x+1)

[A] 2a

9f a <- result of the function

3a <- Pass by reference side effect

[B] 1a

while

f ab

10a Note that the sintax is very compact

100b <- result of the function after the loop

10a <- Pass by reference side effect

The loop: 1st iteration -> in the canvas a:=1

in the function 2x

since assignment is used on x -> 2a

4
2

2out

2nd iteration -> in the canvas a:=2

in the function 3x

since assignment is used on x -> 3a

9
2

3out

and so on ...

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

7 / 21

[C] 1a

while

f aa

10a

<- result of the function is also the input variable

25a <- Pass by reference side effect overridden by the assignment
on the canvas (because is the last executed)

The loop: 1st iteration -> in the canvas a:=1

in the function 2x

since assignment is used on x -> 2a

4
2

2out

since the result is assigned to a -> 4a

2nd iteration -> in the canvas a:=4

in the function 5x

since assignment is used on x -> 5a

25
2

5out

since the result is assigned to a -> 25a

a=25 >= 10 -> [END OF THE LOOP]

A variable not defined in the canvas can be set in the canvas from inside the function,
providing this variable is used as function's argument and a value assigned to it
in the function

[3.3]

a

if

else
"ok"msg

"result not allowable"msg
0a

10
2

xa
f , msgx

15f , message5 <- result of the function

"ok"message <- Pass by reference side effect

If you expect to use the input variable as target of the calculations inside the function
and you want to avoid side effects, you have to transfer the value to another variable
and use the latest

[3.4]

v

2
v

2

v
vv

xvf x

2a

6.7071f a

2a <- No side effects (no assignment used on the function arguments)

Like for simple procedures, on evaluation "local unknowns" can get their value from the
parent level (see [2.5])

[3.5]

out

c3xoutf x <- c is an unknown in the function (not defined locally)

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

8 / 21

[A] 2a

3c

11f a <- symbolically the output should be f(2)=2+3*c
c exists in the canvas -> f(2)=2+3*3=11

[B] 4c

14f a <- symbolically the output should be f(2)=2+3*c
c exists in the canvas -> f(2)=2+3*4=14

[3.6]

v

kvv

5k

k3xvf x <- here k is unknown in the function => stored as name

<- from this point k is known in the function (local variable)

[A] 22f 2 <- 2+3*5+5=22

k "k - not defined."lastError <- no side effects

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

9 / 21

IMPORTANT

The use of local unknowns (or better "unassigned local variables") might lead you to
unwanted results in some circustances.

One typical case is using features like "dynamic arrays" of matrices/systems.
This feature allow to assign elements' values without initializing the matrix/system.
If the target matrix is not defined locally, a matrix from the canvas may be used either
intentionally or unintentionally; if you need to avoid this behavior you have to define
the variable before using it (see example below)

[3.7]

M

x2
21

M

x
11

Mf x

M

x2
21

M

x
11

M

0Mg x

[A] 11M

42f 2 42g 2 <- you didn't notice differences

[B] 111M

142f 2 42g 2 <- in f(x), M from canvas is used as template

1

1
M[C]

01

42
f 2 42g 2

Another typical case might happen working with symbolical functions.
You might use a local unknown in the RHS of something, with the precise scope of being
an unknown. If at the evaluation of the function a variable with the same name exists on
the parent level, the result will be different from the one you planned (see below)

[3.8]

r3

r2

r1

d

d y2
y22xr3

d

d y2
v2r2

d

d y1
v1r1

y22xv2

y12xv1f x

5y2 0IsDefined y1 1IsDefined y2

v1 stores 3+2*y1, because y1 doesn't exists anywhere;

2

0

2

f 3 v2 stores 13 (3+2*5), because y2=5 exists on the top level;

r1 stores 2 (expected value), because v1 contains the unknown y1;

r2 stores 0, because you are differentiating 13 (a constant);

r3 stores 2 (expected value), because the order of computation;
first of all differentiation is made (calculation of the RHS),
then the assignments looks to replace unknowns from RHS to store
it in the variable LHS variable

This might become a huge problem on big worksheets or if you share the document and who
will reuse your code doesn't realize it (maybe even you, after a long time).

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

10 / 21

IMPORTANT

What you can do to avoid this problem?
- The strong way: initialize local variables (M:0, y2:line(y2,1,1), Clear(y1,y2)*, ...);
- A less strong way: use "unique" names (x#, #x, _x, ...);
Most important: always document your functions (right click -> show description);

* Clear(...) is a function from "Custom Functions" plug-in;
basically you can do almost the same with the following syntax: xx

[3.9]

r3

r2

r1

d

d y2
y22xr3

d

d y2
v2r2

d

d y1
v1r1

y22xv2

y12xv1

Clear , y2y1f1 x

r3

r2

r1

d

d y2
y22xr3

d

d y2
v2r2

d

d y1
v1r1

y22xv2

y12xv1

y2y2

y1y1f2 x note: this doesn't fix the issue,

makes it just more difficult to

happen (still possible)

r3

r2

r1

d

d y#2
y#22xr3

d

d y#2
v2r2

d

d y#1
v1r1

y#22xv2

y#12xv1f3 x

5y2

2

2

2

f1 3

2

2

2

f2 3

2

2

2

f3 3

Can I pass a function as function argument? Yes, you can

[3.10]

out

g 4outf g x

3
x

3
xtest x

64test 4

64f test X <- note the uppercase X; because x is defined in the canvas,
using test(x) I'd pass a number as function's argument

[3.11]

out

g 32outf g 1 <- you can define the type of input function by defining the
number of the arguments required for that function

54f test Z

[3.12]

out

g , 322outf g 2 <- 2-args function required as input

y3x2y3x2test , yx

13test , 32

26f test , YX

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

11 / 21

Can I pass a dependent variable as function argument? Yes, you can, providing that the
function's argument is declared as a function with 0 arguments.

[3.13]

out

x2out

5mf x 0 <- 0-args function required as input; note that here you have
to know the names of the indipendent variables behind the
dependent variable, if you want to define them from inside
the function

m3m3k

30f k <- 2*3*5=30

6f 3 <- numbers are allowed as input

There is also the possibility to point out dummy arguments (dummy argument = something not
used in the function)

[3.14]

out

a2outf <- you may use a variable and then leave it unused, however
this point out immediatly that everything in the argument
will be ignored in the function (you can use even an unit)

2a

4f ""

f <- you still need to add a value to evaluate the function

"Fill in all empty elements."lastError
3a

6f 1

6f 0

Like for variables, it is possible to use functions already defined in the worksheet, or
define locally other functions (nesting)

[3.15]

out

x2outg x

out

g x3outf x

8g 4

24f 4

[3.16]

out

g x3out

out

y5outg yf x PROS of nesting functions:
- you have g(y) right here;
- you may keep a different function with the same name on
the canvas, without interferences;

- you may change the function locally several times
(every time you need it)

- if you don't need the nested function elsewhere, there's
no need to have it on the canvas;

CONS:
- if g(y) is used elsewhere, you have to define it again;
- every time you call f(x), time will be used to define
again g(y);

- local functions aren't available in the dynamic assistant;
- (cosmetic) in some cases, the size of the function

may become too big for the page layout;

60f 4

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

12 / 21

The function itself can be used inside it to make recursive functions

[3.17]

if

else
out

f out

10x

1x2outf x WARNING There's a know bug related to the control of recursive
functions when they falls in infinite loops, that ends
in an unrecoverable crash of the worksheet;
check carefully the logic of your function
and save the worksheet before the evaluation
(disable auto calculation just-in-case)

22f 1 <-- f.e. here it fails if you use a value < -1

As for inline functions, you can use vectorize() on your function or inside your function

[3.18]

out

1ln x1out
f x

432

432
M

2.0986f 2

2.60942.38632.0986

2.60942.38632.0986
f M

[3.19]

out

1ln x1outf x

2.0986f 2

2.60942.38632.0986

2.60942.38632.0986
f M

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

13 / 21

Absolute__definitions

This feature send the value to the top of the worksheet, making it available before the
definition. To create an absolute definitions you have to type the TILDE (~) character
before the name.

The value sent at the top of the worksheet will be available at the next recalculation.
-> This features makes available values through worksheet's recalculations.

Pay attention to this, because actions on the worksheet may trigger partial evaluations of
the worksheet, making results different from what you may think.

[4.1] Number of evaluation performed in the Worksheet

0someVar <- the variable is available above the definition

(press F9)
if

else
1someVarsomeVar

0someVar

IsDefined someVar

<- absolute definition -> value will be sent to the begin
of the worksheet at the next recalculation (press F9)

1someVar <- the variable is updated by the worksheet flow

This feature is available also for functions

[4.2] 15f 6 <- the function is available above the definition

(press F9)

out

3x2outf x <- absolute function

15f 6

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

14 / 21

Here there are some examples of how something simple can be made in several ways.
Namely we want to know Area, Perimeter and Centroid (refered to the bottom-left corner)
of a rectangle, given his base and height.

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

15 / 21

requires following values:

- b: base of rectangle

- h: height of rectangle

result:

- a system containing: centroid, perimeter, area

A

P

C

if

else

"-"CPA

2

h

2

b

C

hb2P

hbA

0h0bRectangleProperties_1 , hb

<- chained definition; some alternatives:

"-"C

"-"P

"-"A "-"C"-"P"-"A

↑NOTE: behavior of definitions
inside matrices changed since
SMath Studio 0.98

2
m0.005

m0.3

m0.025

m0.05

RectangleProperties_1 , cm5cm10RP

cm
2.5

5
1

RPc
2

cm50
3

RPacm30
2

RPp

"-"

"-"

"-"

RectangleProperties_1 , cm5cm10RP

"-"
1

RPc "-"
2

RPp "-"
3

RPa

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

16 / 21

requires following values:

- b: base of rectangle

- h: height of rectangle

- out: a variable to store a system containing: centroid, perimeter, area

result:

- error message

msg

A

P

C

out

if

else

"wrong dimensions"msg

"-"CPA

"done"msg

2

h

2

b

C

hb2P

hbA

0h0bRectangleProperties_2 , , outhb

"done"RectangleProperties_2 , , rescm5cm10

cm
2.5

5
1

resc
2

cm50
3

resacm30
2

resp

"wrong dimensions"RectangleProperties_2 , , rescm5cm10

"-"
1

resc "-"
2

resp "-"
3

resa

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

17 / 21

requires following values:

- b: base of rectangle

- h: height of rectangle

- C: a variable to store the Centroid

- P: a variable to store the Perimeter

- A: a variable to store the Area

result:

- error message

msg

if

else

"wrong dimensions"msg

"-"CPA

"done"msg

2

h

2

b

C

hb2P

hbA

0h0bRectangleProperties_3 , , , , APChb

"done"RectangleProperties_3 , , , , apccm10cm20

cm
5

10
c

2
cm200acm60p

"wrong dimensions"RectangleProperties_3 , , , , apccm10cm20

2
cm"-"acm"-"c cm"-"p

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

18 / 21

requires following values:

- b: base of rectangle, from outside the function

- h: height of rectangle, from outside the function

- C: a variable to store the Centroid

- P: a variable to store the Perimeter

- A: a variable to store the Area

result:

- error message

msg

if

else

"wrong dimensions"msg

"-"CPA

"done"msg

2

h

2

b

C

hb2P

hbA

0h0bRectangleProperties_4 , , APC

cm10b

cm20h

"done"RectangleProperties_4 , , apc

cm
10

5
c

2
cm200acm60p

cm10b

cm20h

"wrong dimensions"RectangleProperties_4 , , apc

2
cm"-"acm"-"c cm"-"p

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

19 / 21

requires following values:

- b: base of rectangle, from outside the function

- h: height of rectangle, from outside the function

result:

- a system containing: centroid, perimeter, area

A

P

C

if

else

"-"CPA

2

h

2

b

C

hb2P

hbA

0h0bRectangleProperties_5

cm10b

cm20h

2
m0.02

m0.6

m0.1

m0.05

RectangleProperties_5""RP

cm
10

5
1

RPc
2

cm200
3

RPacm60
2

RPp

cm10b

cm20h

"-"

"-"

"-"

RectangleProperties_5""RP

"-"
1

RPc "-"
2

RPp "-"
3

RPa

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

20 / 21

2525

540

405

1020

2010

"h""b"

DB

<- input database

output databases ↴

"A""P""C"out5out4out3out2out1

for

stack , 3
R5

2
R5

1
R5out5out5

RectangleProperties_50R5

"example 05"

stack , a4p4c4out4out4

RectangleProperties_4 , , a4p4c4

"example 04"

stack , a3p3c3out3out3

RectangleProperties_3 , , , , a3p3c3hb

"example 03"

stack , 3
R2

2
R2

1
R2out2out2

RectangleProperties_2 , , R2hb

"example 02"

stack , 3
R1

2
R1

1
R1out1out1

RectangleProperties_1 , hbR1

"example 01"

2j
DBh

1j
DBb

..rows DB2j

IMPORTANT

<- NOTE: functions inside procedures can be
evaluated without assignment/evaluation
operators

2525

540

405

1020

2010

"h""b"

DB

625100
12.5

12.5

20090
2.5

20

20090
20

2.5

20060
5

10

20060
10

5

"A""P""C"

out1

625100
12.5

12.5

20090
2.5

20

20090
20

2.5

20060
5

10

20060
10

5

"A""P""C"

out2

625100
12.5

12.5

20090
2.5

20

20090
20

2.5

20060
5

10

20060
10

5

"A""P""C"

out3

625100
12.5

12.5

20090
2.5

20

20090
20

2.5

20060
5

10

20060
10

5

"A""P""C"

out4

625100
12.5

12.5

20090
2.5

20

20090
20

2.5

20060
5

10

20060
10

5

"A""P""C"

out5

8 dic 2016 23:30:20 - User-defined Functions in SMath Studio [rev.8].sm

21 / 21

