
Comput. & Graphics Vol. 6, No. I, pp. 35-37, 1982 0097~493/82/010035-03503.0010
Printed in Grea! Britain. Pergamon Press Ltd.

AN ORIENTATION METHOD FOR
CENTRAL PROJECTION PROGRAMS

DAVID P. ANDERSON
Chemistry Department, University of Wisconsin, Madison, WI 53706. U.S.A.

(Received 16 December 1980)

Abstraet--A centrally projected image is based on an object, a viewpoint and a viewer orientation. The programs
reported to date which calculate centrally projected images require all of these as input. Instructions for the
programs usually suggest that the hypothetical observer face toward the center of the object. There are two major
problems with this: (1) there may be no clear way of defining the "center", and (2) an orientation chosen in this
manner may result in parts of the object lying behind or to the side of the observer and hence being invisible or
severely distorted under the projection. This paper describes an algorithm for calculating a viewing direction which
will render visible the entire object whenever this is possible, and will furthermore minimize distortion in the
projected image.

A FORMALIZATION OF THE PROBLEM

We will begin by describing central projection. Sup-
pose an object in three-space is viewed by an observer
with fixed position and orientation. Let VP be the view-
point, described by a three-vector. Let VA, VR and VU
be unit vectors which, in the orientation of the observer,
point in the ahead, right and up directions respectively.
(VR, VA, VU) must be orthonormal and right-handed (i.e.
VU = VR × VA). VA is referred to as the "viewing direc-
tion". The "projection plane" or "image space" is the
plane which is normal to VA and contains the point
VP + VA. The image space has a coordinate system with
origin VP + VA and basis vectors VR and VU.

In addition to the underlying (x,y,z) coordinates,
three-space can be given a coordinate system in which
VP is the origin and (VR, VA, VU) are basis vectors;
these will be called "observer" coordinates. Let P be an
object point; the observer coordinates (r, a, u) of P are
the projections of P-VP onto VR, VA and VU, given by

r = [P-VP, VR]

a = [P-VP, VA]

u = [P-VP, VU]

(1)

where [,] denotes the scalar product.
P is visible iff it lies in front of the observer, i.e. iff

a > 0. If P is visible, its "central projection" is the point
P' where the ray which starts at VP and goes through P
intersects the projection plane. The image space coor-
dinates of P' are (px, py) where

p x = r/a
(2)

py = u/a.

This is shown by similar triangles, noting that the pro-
jection plane, in the observer coordinate system, is the
plane a = 1.

Three-space is divided into visible and invisible parts
by the plane a = 0. It is possible to compute the image of
a simple object which is only partially visible without
clipping it in three dimensions. This can be done as

follows: if the segment from Pt to P2 is in the object,
where [Pt-VP, VA]> 0 and [P2-VP, VA]<0, we can
compute the images P', and P~ by the above formulae,
ignoring for the moment the invisibility of P2. The pro-
jection of the visible part of the segment is the ray in
the image space which begins at P'I and goes directly
away from P~ (that is, goes in the direction of P;-P-;).

Most projection programs, however, are not capable of
handling this case, and hence need a viewing direction
which makes the entire object visible. Call a viewing
direction "feasible" iff it has this property (the notion of
feasibility is a function of object and viewpoint). For
some viewpoints there is no feasible viewing direction,
namely those points in the closed convex hull of the
object. For any viewpoint the set of feasible viewing
directions is a subset of the unit sphere which lies
entirely in some hemisphere; it is convex in the sense
that if V, and V2 are feasible, so is any point on the
smaller arc of the great circle through V~ and V2.
Assuming that the object is closed and bounded, the set
is open in the sphere topology.

If there is a feasible viewing direction there are
infinitely many, and we need a criterion for selecting the
best one. To this end we will analyze distortion in
centrally projected images; our criterion will be lack of
distortion.

DISTORTION FROM CENTRAL PROJECTION

Let us assume that a viewpoint VP has been used to
calculate an image, and that we now look at the image
from points other than VP. When viewed orthogonally,
the image at a point P' appears locally to be stretched out
in the direction of the line through P' and the image
space origin. In particular, if the object is a small sphere
whose center has projection P', then the image is the
intersection of the projection plane and the cone with
vertex VP generated by the sphere, and hence is an
ellipse. The major axis of the ellipse lies on a line
through the image space origin. Let a be the angle
between P'-VP and VA, b be half the angle subtended by
the sphere from VP, and r be the distance from VP to P'.

35

36 D. P. ANDERSON

P' divides the major axis into two segments with lengths

L~ = r sin (b)/cos (a + b)
(3)

L2 = r sin (b)/cos (a - b).

Hence the major axis has length

Lmajor = L~ + L2

= r sin (b)(l/cos (a + b) + 1/cos (a - b)).
(4)

The minor axis has length

Lminor = 2r sin (b). (5)

As the size of the sphere (and hence of its image) goes
to zero, the ratio of the lengths of the major and minor
axes approaches a limit which is at least one and is equal
to one iff P' is the image space origin. We adopt this limit
as a measure of the local distortion at P'; it is given by

D(P') = lim LmaiodLmi,o,
b-,O

= lim (l/cos (a + b) + 1/cos (a - b))/2 (6)
b-.~O

= 1/cos (a).

As a is varied from 0 to 7r/2, the distortion increases
strictly and without bound. Thus minimizing the maxi-
mum distortion is equivalent to minimizing the maximum
value of a.

So far we have defined the notions of feasible and
optimal viewing directions, and have found that the
optimal direction is the vector VA which minimizes the
maximum over object points P of the angle between VA
and P-VP. We now present an algorithm to find this
direction.

MOTIVATION FOR THE ALGORITHM

Assume that the convex hull of the object is a poly-
hedron. Let PI P, be a set of object points which
includes the set of vertices of the convex hull; e.g. if the
object is a set of polygons, P~ P, could be taken to
be the set of vertices of the polygons. Define the "image
vectors" to be the vectors Pi-VP normalized to unit
length; these are directions from the observer to object
points and should now be visualized as emanating from
the origin. In what follows, we will deal with solid
circular cones which are single and whose vertex is the
origin. Such a cone will be called "feasible" iff it includes
all the image vectors (which is equivalent to including the
entire object). The axial direction of a feasible cone is a
feasible viewing direction. The "optimal" cone is the
narrowest feasible cone; the axial direction of the opti-
mal cone is the optimal viewing direction.

The optimal cone satisfies one of the following con-
ditions:

(1) the two most distant image vectors (in the sense of

angular separation) both lie on the surface of the cone,
and their midvector is its axis, or

(2) at least three image vectors lie on the surface of
the cone.

This assertion can be proved by contradiction:
suppose that the optimal cone satisfies neither (1) nor (2).
If no image vectors lie on its surface, then we can shrink
the cone slightly, keeping its axis fixed, and get a nar-
rower feasible cone. If exactly one image vector, V, lies
on the cone surface, we can find a narrower feasible
cone by moving the axis slightly toward V, while con-
straining the cone to have V on its surface. If the cone
has exactly two image vectors Vl and V2 on its surface,
but its axis is not the midvector of V~ and V2, then we
move the axis slightly toward the midvector, while con-
straining the cone to have Vj and V2 on its surface. In
any case, we have found a narrower feasible cone, which
contradicts the assumption of optimality.

The following observation makes the algorithm practi-
cal: a cone includes all the image vectors iff it includes
the edges of the smallest convex solid pyramid whose
vertex is the origin and which includes all the image
vectors. Hence the optimal cone for the pyramid edges is
the same as the optimal cone for the entire set of image
vectors; hence we can discard all the image vectors
except the pyramid edges. In addition, the image vectors
which lie on the surface of the optimal cone are edges of
the pyramid.

We combine the above facts to get an algorithm which
is fast yet general: first, the subset of the image vectora
consisting of the edges of the convex pyramid is con-
structed. Second, we find the two most distant edges and
see if the cone centered at their midvector and contain-
ing them on its surface also contains the other edges. If
so, this cone is optimal. Otherwise, for every set of three
edges, we see if the (unique) cone whose surface passes
through them contains the other edges. The optimal cone
is then the narrowest one satisfying this condition.

It is interesting to consider the limit as the optimal
cone becomes narrow, for then the geometry of the part
of the sphere surface on which the image vectors lie
becomes like that of the plane. The problem is then
transformed to that of finding the smallest disc which
contains a given set of points in the plane. Suitable
translations of the above two assertions hold in the
planar case: namely, that the optimal disc is determined
by the vertices of the convex hull of the set of points,
and its boundary either passes through three of the
points or passes through two and is centered at their
midpoint.

DETAILS OF THE ORIENTATION METHOD

Let us now examine the computational details of the
spherical case. The convex pyramid defined earlier is
constructed inductively, starting with the pyramid
determined by any three non-coplanar image vectors,
then adding the remaining image vectors one at a time.
At each stage the pyramid is described by a circularly
linked list of edge vectors, ordered clockwise around the
pyramid surface when viewed from outside the pyramid.
Suppose V1 immediately precedes V2 in the edge list;

An orientation method for central projection programs 37

then V~ x V2 is normal to the pyramid face with edges V,
and V2. The pyramid consists of those points which have
nonnegative scalar products with all the face normals.
Since the face normals are used often, they are stored in
a list with the same link structure as the edge list.

After the initial pyramid has been formed using three
non-coplanar image vectors, each remaining image vec-
tor V is processed as follows: the scalar products be-
tween V and each of the face normals are found. These
will be positive (negative) if V is on the right (wrong) side
of the face plane. If all the scalar products are non-
negative then V lies within the current pyramid and is
ignored. If all the scalar products are negative then V lies
in the pyramid which is the reflection of the current
pyramid through the origin; any cone which includes the
current pyramid must exclude V, hence there is no
feasible cone and therefore no feasible viewing direction.
If some of the scalar products are negative and some are
not, then V becomes a new pyramid edge. The faces of
the pyramid which gave negative scalar products neces-
sarily are contiguous; the edges which are interior to this
set of faces are removed from the list, and are replaced
by V. The list of face normals is updated accordingly.

When all the vectors have been processed, the
pyramid is complete and we are assured of the existence
of a feasible viewing direction. It is important to make
the set of edges as small as possible. If two or more
faces are found to be nearly coplanar they can be
replaced by a single face; this is done by removing the
edges interior to the set of faces.

We now find the two edge vectors V~ and V2 whose
angular distance is greatest (i.e. whose scalar product is
least). The midvector Vc is calculated as the normalized
sum of V~ and V2. Let d = [Vc, Vl]; d is the cosine of the
angle between Vc and V~ (or Vc and V2). The cone with
axis V, and which contains V~ and V2 on its surface is
optimal iff it is feasible, which in turn is equivalent to
[Vc, V] -> d for all edges V.

If this cone is not feasible, we then loop over every
three-element subset (V~, V2, V3) of the set of edge vec-
tors. A vector V is found which makes equal acute angles
with V~, V2 and V3. This is done by finding a non-zero
solution to the underdetermined linear system [V, Vt] =
[V, V2] = IV, V3], negating if necessary to give a positive
scalar product with V~, then normalizing. If [V, Vd-<
[V,V'] for all edge vectors V', then V is feasible; the
optimal direction is the V corresponding to some
(V~,V2, V3) which is feasible and for which [V, Vd is
greatest.

This concludes the calculation of VA. Define the "im-
age radius" to be the largest distance from the image
space origin to an image point. A bonus of the algorithm
is that it gives the image radius; this is tan (x), where x is
the angle between the axis and surface of the optimal
cone. This can be used for automatic scaling; that is,
given a desired radius r of the plotted image, the pro-
gram uses an appropriate scaling factor, namely r/tan (x).
Note that this scale factor is also the distance (in the
physical units of the output device) at which the picture
should be viewed, orthogonally to the image space origin,

to eliminate distortion. The image radius is minimized by
the optimal viewing direction and is achieved by at least
two image points.

CALCULATION OF THE OTHER

ORIENTATION VECTORS

Having computed VA, we must still find VR and VU
such that (VR, VA, VU) is an orthonormal right-handed
basis. This condition does not uniquely determine VR
and VU; the leeway corresponds to rotating the final
image. We might ask that, in addition, the angle between
VU and (0,0,1) be as small as possible given that
[VU, VA] = 0, for then the "up" direction in the image
will correspond as closely as possible to the up (i.e. z)
direction in three-space. This will be the case if VR is
taken to be (0,0, I)×VA and then, necessarily, VU is
VA × VR.

EFFICIENCY

Let n be the number of image vectors. A reasonable
guess for the order of the average number of faces in the
convex pyramid, as it is being constructed, is n '/2. In
constructing the pyramid we must find the scalar product
of each image vector with each face normal of the
pyramid at that stage, so the time to construct the
pyramid is of order n 3/2. The remaining computation time
depends on the case. Finding the two most distant vec-
tors takes time of order n, so if the two-vector cone is
feasible we're done in total time of order n 3/2. Otherwise,
for every three-element subset of the edges we must see
if the other edges lie in the cone determined by the three;
there are about n 3/2 three-element subsets, so there are
on the order of n 2 steps in this case.

It should be pointed out that n need not be of the same
order of magnitude as the number of endpoints or ver-
tices in the object. With a slight loss of accuracy and
generality, a complex part of the object can be represen-
ted by the vertices of any convex polyhedron known to
include it. In particular, the entire object could be
represented by the eight points determined by its limits
in the coordinate directions.

The a!gorithm has been implemented in structured
FORTRAN on a Harris Slash 7 minicomputer, as part of
a grid-point surface plotting program. For a 40 by 40
surface (n = 1600) between one and two CPU seconds
are needed to find the viewing direction. Refinements of
the algorithm could undoubtedly reduce this still further.

CONCLUSION

The problem of finding an optimal viewing direction
has been formalized, and a solution given. The algorithm
is not hard to program, and is efficient enough for inter-
active and real-time applications. One would hope that
future graphics programs which use central projection
will handle the orientation problem automatically, using
this method or another like it.

Acknowledgements--The author wishes to thank Alex Strong for
sharing his insight and the University of Wisconsin Chemistry
Department for the use of its computing facility during the
development of the program.

