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How to Prepare and Interpret Graphs 
James W. Phillips

1.  Why prepare graphs? 
 A graph is perhaps the most effective tool that an 
engineer has, not only for understanding the relation-
ship between two or more variables, but also for 
conveying relational information to others.  Indeed, 
the graph is to the engineer what a painting is to an 
artist: a complete story can be told; the reader learns 
something not only about the way y  depends on x , 
but also about the way the graph’s creator thinks. 

 Like technical writing, graph preparation can be 
fun.  There really are only a few rules for making 
effective and attractive graphs.  Axes should be drawn 
in a fine line, each axis being labeled with the variable 
name, symbol, and units; numbers should appear at 

major tic marks or grid lines, and these numbers 
should be multiples of 1, 2, or 5 (with preceding or 
trailing zeroes as necessary).  Curves representing 
theoretical (or computational) results are drawn in 
heavy lines without points; these curves are generally 
solid unless they represent extrapolated or compara-
tive results, in which case they may be dashed.  Raw 
experimental data are usually plotted as points, with 
or without error bars, depending on the nature of the 
data reduction. 

 There are cases where theoretical or computa-
tional results are not available except at a few points; 

then points should be used tell this story.  Likewise, 
experimental data may be obtained as continuous 
curves, as in the case of an XY recorder plot of load 
versus deflection; then a solid curve for the experi-
ment is appropriate. 

 The first step in preparing a graph is to select 
which variable to plot on which axis.  The rule is to 
plot the independent variable on the horizontal axis 
and the dependent variable on the vertical axis.  It 
usually requires some thought to decide which 
variable is independent and which is dependent.  An 
example is shoe size and age: shoe size depends on 
age, not the other way around, so age would be 
plotted on the horizontal axis and shoe size on the 
vertical axis.  If it is not clear which variable is 
independent and which is dependent, ask your 
laboratory supervisor for advice. 

 More than one dependent variable may be plotted 
on the same graph, but each must then be clearly 
identified, either by labeling each curve or by using 
different symbols or line types. 

 Generally, a “key to symbols” should be avoided; 
individual curves should be labeled by placing words 
or symbols near the curves, preferably without the use 
of arrows.  An example of a graph that follows these 
rules is presented in Fig. 1. 

 Axes require a scale large enough to plot all points 
and small enough that the points are spread out across 
the entire graph. It is essential to give the beginning 
and ending scale values and to use others as necessary 
to indicate the scale interval. Axes must be labeled 
with the name of the parameter and the scale unit. 

 Often, a graph is prepared with experimental 
data, and a curve fit of some type is sought.  The 
following discussion pertains to the proper construc-
tion and interpretation of straight lines drawn on 
various combinations of linear and logarithmic axes. 

2.  Linear 
 If the data appear to be represented by a straight 
line on linear–linear graph paper, the following form 
is appropriate: 

 y mx b= + , (1) 
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Fig. 1.  Example of a technical graph. 
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where m  is the slope and b is the intercept along the 
line x = 0 .  In general, two points are chosen from the 
line drawn through the data, as shown in Fig. 2. 

 The slope may be calculated by writing Eqn. (1) 
twice, once for each ( , )x y  pair, and subtracting: 

 m
y y
x x

=
−
−

2 1

2 1
. (2) 

For best accuracy, the two points should be separated 
widely along the line. 

 The constant b is the value of y  when x = 0 ; if the 
graph is drawn with the y axis passing through x = 0  
then b is just the intercept shown in Fig. 2.  However, 

if the graph is drawn with the y  axis passing through 
some other value of x , say x0 (as shown in Fig. 3), 
then the value of b is not y0  but rather 

 b y mx= −0 0 , (3) 

which follows from Eqn. (1). 

 Even in this simple case of linear–linear plots, one 
must be careful about obtaining the value of m  by a 
strictly graphical procedure.  Only in the rare case 
when the scale for x  is the same as that for y  will m  be 
found correctly by taking ∆x = 1 as shown in Figs. 2 
or 3, and determining the slope graphically. 

 For example, if y  denotes velocity, which is plot-
ted at 5 km/s per cm, and x  denotes time, which is 
plotted at 0.1 s per cm, and the data fall on a straight 
line with slope equal to 2.1 (cm/cm) on the graph 
paper, then the acceleration a is not 2.1 km/s2 but 
rather (2.1)(5 km/s)/(0.1 s/cm) or 105 km/s2. 

 One can obviously take the scales into account if 
they are not the same, but it is recommended to use 
Eqns. (1–3) directly to avoid the problem altogether. 

3.  Log–log 
 If the data appear to be linear on log–log paper,1 
as shown in Fig. 4, then the power-law relation 

 y Ax m= , (4) 

where A and m are constants, may be an appropriate 
representation.2  Taking the base-10 logarithm3 of both 
sides of Eqn. (4) gives 

                         

1The term ‘log–log paper’ refers to graph paper in which the 
logarithms of the indicated values along both axes are 
already scaled linearly.  However, the axis labels and the 
indicated values placed at tic marks are the values of x and 
y, not their logarithms.  It is unnecessary (and incorrect) to 
take the logarithms of numbers before plotting on log–log 
paper. 

2If x has dimensions (such as meters or pascals) and m is not 
a rational number, then there is an inherent problem with 
identifying the dimensions of the constant A.  For this 
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Fig. 2.  Linear–linear slope and intercept. 
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Fig. 3.  Linear–linear slope and intercept 

at nonzero value of x. 
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Fig. 4.  Log–log slope and intercept. 
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 log log logy A m x= + , (5) 

which is basically the same form as that of Eqn. (1).  
The slope m is now given by 

 m
y y
x x

=
−
−

log log
log log

2 1

2 1
. (6) 

 The intercept along the log y  axis is easily 
interpreted as log A  as long as the log y  axis passes 
through the origin of the log x  axis (i.e. at x = 1).  For 
example, when plotting fatigue data in the form of S-N 
diagrams or plots of strain amplitude (∆ε / 2 ) vs. 
reversals (2N), the logarithm of a stress or strain 
variable is often plotted as a function of the logarithm 
of the number of cycles N to failure.  Calculations for 
straight-line curve fitting are simplified if the logS or 
log(∆ε / 2 ) axis passes through zero on the logN or 
log(2N) axis. 

 Sometimes, however, it is impractical to include 
log x = 0  in the plotted range of log x , and then the 
log y  axis will pass through a nonzero value of log x , 
say log x0 .  As shown in Fig. 5, the intercept of the 
straight line with the log y  axis occurs at log y0 , not at 
log A  as before.  It follows from Eqn. (5) that 

 log log logA y m x= −0 0 , (7) 

                                          
reason, some investigators prefer to normalize the variable x 
with respect to some reference value, say x , and write 
y = A(x / x )m ; then at least the dimensions of A are the 
same as those of y.  Otherwise, it is difficult to give a 
physical significance to the constant A. 

3Here, ‘log’ is used to denote the base-10 logarithm (log10) 
but the natural logarithm (ln) could also be used.  Since in 
this lab emphasis is placed only on base-10 operations, the 
subscript ‘10’ will be assumed. 

that is, 

 A
y
x m= 0

0
. (8) 

 As in the case of linear–linear plots, one must be 
careful about obtaining the value of m  in a log–log 
plot by a strictly graphical procedure.  If log–log paper 
is used, and the scale for log x  is the same as that for 
log y , i.e. decade values of x  and y  are plotted with 
the same spatial increment, then m  will be found 
correctly by taking the slope graphically. 

 However, if unequal scales are used for log x  and 
log y , i.e. if decade values of x  and y  are plotted with 
unequal spatial increments, then it is easy to make a 
mistake in calculating m  graphically.  Again, one can 
take the scales into account if they are not the same, 
but it is recommended that Eqns. (4–8) be used 
directly to avoid the problems of graphical interpre-
tation altogether. 

 As an example of a log–log plot drawn with 
unequal log scales, consider Fig. 6, which is taken 
from the laboratory on fatigue.  It is required, among 
other things, to find the slope c  of the “plastic strain” 
line, which is given empirically as 
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f

cN
2

2= ′ ( ) , (9) 

where ′ε f  is the “fatigue ductility coefficient” and c  is 
the “fatigue ductility exponent.”  Observe that the 
“plastic strain” line intersects the strain-amplitude 
axis at ∆ε / .2 4 0 10 2= × − , and at this point, 
( ) .2 10 100N = × , i.e. ( )2 1N = .  Let this point be point 
number 1.  A second point can be identified by 
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Fig. 5.  Log–log slope and intercept 

at nonzero value of logx. 
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Fig. 6.  Example of a log–log plot:  

the total-strain life curve. 
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extending the “plastic strain” line until it intersects the 
reversals-to-failure axis.  This intersection occurs at 
( ) .2 2 0 104N = × , at which point ∆ε / 2 10 4= − .  The 
slope c  is therefore given by 

 

c
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 Now it may appear that a mistake in the calcula-
tions must have been made because it is obvious from 
Fig. 6 that the slope of the “plastic strain” line is more 
negative than −1.  That is, the way Fig. 6 is drawn, it 
appears that ( ) .− ≅c 1 2  or c ≅ − 12. .  However, the 
strain-amplitude logarithmic scale is stretched by a 
factor of about 2, compared with the reversals-to-
failure logarithmic scale, so that the correct value of c 
is about –1.2/2, or –0.6, as was obtained analytically. 

 Also note that, by passing the (log of the) strain-
amplitude axis through the zero value of the (log of 
the) reversals-to-failure axis, one can “pick off” the 
value of ′ε f  easily; its value is 4 0 10 2. × −  or 0.040. 

4.  Log–linear (semi-log) 
 Some data, when plotted on semi-log paper, 
appear to fall along a straight line.  If so, the represen-
tation 

 y Aemx=  (10) 

may be appropriate,4 since by taking logarithms of 
both sides, one obtains 

 log log ( log )y A m e x= + . (11) 

In this case, one would choose the logarithmic axis for 
y  and the linear axis for x , as shown in Figs. 7 and 8.  
As before, calculations are simplified if the log y  axis 
passes through the x  axis at x = 0 .  Either way, the 
slope of the line is m elog , and hence 

 m
e

y y
x x

=
−
−

1 2 1

2 1log
log log

. (12) 

If the log y  axis intersects the x  axis at x = 0  (Fig. 7), 
then the intercept is simply log A , i.e. the value of A  

                         

4The base need not be e; it could be any constant, such as 10. 
However, many rate laws are written with base e. 

can be read off directly from the plot.  If the log y  axis 
intersects the x  axis at some other value of x , say x0 
(Fig. 8), then the intercept is not log A  but rather 
log y0 , and (from Eqn. (10)) 

 y Aemx
0 0=   

or 

 A
y

emx= 0
0

. (13) 

5.  Special 
 Besides the linear, log–log, and semi-log plots 
described above, many other types of nonlinear plot 
are used for special purposes.  There are polar plots, 
probability plots, Weibull distribution plots, and 
others.  Often the purpose of these plots is to suggest 
that a particular mathematical representation is 
reasonable if the data fall along a straight line when 
plotted on special nonlinear axes. 
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Fig. 7.  Log–linear slope and intercept. 
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Fig. 8.  Log–linear slope and intercept 

at nonzero value of x. 



TAM 224/CEE 210 Preparing and Interpreting Graphs Graphs–5 

 One such case arises in the laboratory on asphalt 
cements.  It is found that the viscosity of bitumens is 
an extremely sensitive function of temperature, and it 
is convenient to plot the logarithm of the logarithm of the 
viscosity as a function of the logarithm of the absolute 
temperature.  The generic situation is shown in Fig. 9, 
where a straight-line fit to data has been indicated. 

 A simple expression that provides a straight-line 
plot on these axes is 

 y Ax m
= 10 , (14) 

where A  and m  are constants.  Taking the logarithm 
of both sides gives 

 log y A x m=  (15) 

and taking the logarithm again gives 

 log(log ) log logy A m x= + . (16) 

 As before, the slope m  can be found by writing 
Eqn. (16) twice, once for each ( , )x y  pair, and 
subtracting: 

 m
y y
x x

=
−
−

log(log ) log(log )
log log

2 1

2 1
. (17) 

 The intersection of the log(log )y  axis with the 
log x  axis may or may not occur at log x0 0= ; in 
general, as illustrated in Fig. 9, it will not; suppose this 
intersection occurs at log logx x= 0  as shown.  Then 
the intercept of the straight line with the log(log )y  
axis will occur at log(log )y0  and, from Eqn. (15), 

 A
y

x m=
log 0

0
. (18) 

Observe that if the log(log )y  axis does intersect the 
log x  axis at log x0 0=  (i.e. x0 1= ), then A  is simply 
given by log y0 . 

 As an example, consider the relation between 
kinematic viscosity ν  and temperature T  given in 
Fig. 10 for an unknown grade of asphalt cement.  (See 
Lab 4 for details.)  At T1 = 60°C the viscosity ν1 is 
found to be 100,000 cSt, whereas at T2  = 135°C the 
viscosity ν 2  is only 500 cSt.  If, as shown in the figure, 
the data for intermediate temperatures are linear 
when log(log )ν  is plotted as a function of log T , then 
the viscosity–temperature relation must be of the form 

 ν( )T AT m
= 10 . (19) 

Note that although the temperature axis is marked in 
degrees Celsius, the locations of the tic marks are 
determined by taking the logarithms of temperature in 

degrees Kelvin (i.e. absolute temperature).  From 
Eqn. (17), the dimensionless slope m  is given by 
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Fig. 9.  Log(log)–log slope and intercept 

at nonzero value of logx. 
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Fig. 10.  Viscosity–temperature relation for a certain grade 

of asphalt cement. 
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Then, from Eqn. (15), using the data at T T= 1, one 
finds that 

 A =
+

= ×−
log( , )
( ) .04

100 000
273 60

227 103
6 . 

Unlike the exponent m , the coefficient A  has units, 
but it is difficult to ascertain what they are, given the 
empirical nature of the assumed relation (14).  In a 
circumstance like this, one must specify exactly the 
units used for all variables in the equations.  Note that 
even m , which is dimensionless, has a value that 
depends on the units chosen to express viscosity and 
temperature. 

 Once the values of A  and m  are determined, one 
can interpolate or extrapolate to find y  for any x .  In 
the present example, suppose the extrapolated value 
of asphalt viscosity at the freezing point of water (T  = 
0°C) is sought.  Then, from Eqn. (19), 

 ν( )

. ,

( )( ) .
0 10

1 38 10

227 10 273 0

9

6 3 04
=

= ×

× + −

cSt
 

which is more than 3 orders of magnitude off the top 
of the graph (Fig. 10).  An extrapolation to this extent 
may not be reasonable; but it is fair to estimate that the 
viscosity of this asphalt cement will be 3 to 4 orders of 
magnitude greater at 0°C than it is at 60°C. 

6.  Summary 
 Several plotting schemes have been presented, 
and there are others that have not been presented.  
With whatever scheme is chosen, one must exercise 
care in determining the constants that emanate from 
the straight-line fits that are sought.  A good way to 
check results for the determined coefficients is to sub-
stitute known values of x , such as x1  and x2 , into the 
appropriate expressions for y , and to make sure that 
the known values of y  are recovered. 
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