Generate a random array appVersion(4]=:"0.99.7691.4821"

RND (m,n):z [M::Or‘::[l..m] c::[l..n]]

- 9
M =10 -random[le J
rc
and simple two test function .f(M)::|nopme(M) g (M):=|norme (M)
norme (M)
A :=RND (100, 100)
to :=time (0) f(A)=57.4732 time (@) —to =0.242s Two questions:
1) Why are different?
to = time (@) g(A)=57.0345 time(e)-to=0.220s 2) Why g is always faster than f?

Well, are different because A isn't parsed as a true numeric array. Using eval now are the same:
A :=eval (RND (100, 100))
to :=time (0) f(A)=57.3581 time (@) —to =0.216 s Remain the second question.

to :=time (@) g(A)=57.3581 time (@) —to =0.195 s

BTW, we now are sure that with eval() we can parse A as a numberic entity, and can't do nothing
for speed up a procedure involving A. NDTM Amarasekera shows that's false. Here an example

h(M)=|m:=m h' (Mo):=|M:=Mo
1 m:=M
for k € [2..length ()] |
if m<m, for k€ [2..length(M)]
else m::Mk
continue else
m continue
m

A :=eval (R\D (75, 75))

to :=time (@) h(A)=0.999 time (@) —to =32.273 s

to :=time (0) h' (A)=0.9996 time (@) —to =0.71s

Alvaro

