1) Formulas for the dependence of the criteria on the weight composition: X0 = Mass fraction o fat, X1 = Ripening time, X2 = Whipping temperature.

Organoleptic criterion

$$Ko(x) := 1 - \left[e^{-\left[0.546365 \cdot x_0 + 0.032711 \cdot x_1 + \left(-0.015012 \cdot x_2\right)\right]\right]^2}$$

Foaming ability, where a0, a1, a2,a3,b1,b2,b3,c1 ---->max

 $K\pi(x) := 38.5123 + 104.2814 \cdot x_0 + 54.2218 \cdot x_1 - 3.1325 \cdot x_2 - 12.7951 \cdot x_0 \cdot x_1 - 0.6257 \cdot x_0 \cdot x_2 + 0.0296 \cdot x_1 \cdot x_2 + 0.0137 \cdot x_0 \cdot x_1 \cdot x_2 + 0.0137 \cdot x_1 \cdot x_1 \cdot x_2 + 0.0137 \cdot x_1 \cdot x_2 +$

foam stability ---->max

 $Ky(x) := 9.99080 + 3.29867 \cdot x_0 + 1.86931 \cdot x_1 - 1.59846 \cdot x_2 + 0.00463 \cdot x_0 \cdot x_1 + 0.01379 \cdot x_0 \cdot x_2 + 0.00767 \cdot x_1 \cdot x_2 - 0.02691 \cdot x_0 \cdot x_1 \cdot x_2$

Average size of the dispersed phase ---->max

 $Kc(x) := 131.0455 - 25.8962 \cdot x_0 + 4.3488 \cdot x_1 + 38.9845 \cdot x_2 - 1.6066 \cdot x_0 \cdot x_1 - 5.2486 \cdot x_0 \cdot x_2 - 4.5342 \cdot x_1 \cdot x_2 + 1.0929 \cdot x_0 \cdot x_1 \cdot x_2$

2) convolution of criteria in criterion K ---->max.

$$K(x) := Ko(x) \cdot K\pi(x) \cdot Ky(x)$$

3) initial values of mass fraction of fat in milk, ripening time, whipping temperature:

$$x := \begin{pmatrix} 3.5 \\ 4 \\ 6 \end{pmatrix}$$
 Changing initial values to find the best recipe and technology

value of indicators of the original recipe

$$Ko(x) = 0.98$$

$$K\pi(x) = 411.18$$

$$Ky(x) = 17.701$$

$$Kc(x) = 141.981$$

$$K(x) = 7.132 \times 10^3$$

4) Optimization of fat content in milk, ripening time, whipping temperature:

Given

changing restrictions to find the best recipe and technology.

$$x \ge 0$$

$$x_1 \leq 5$$

 $^{30 \le \text{Kc}(x) \le 135}$ <---- restrictions on the average size of the dispersed phase

X := Maximize(K, x)

vector of each product sharea:

$$X = \begin{pmatrix} 5.932 \\ 5 \\ 4.461 \end{pmatrix}$$

x0=mass fraction of fat in milk,% x1=ripening time, h x2=whipping temperature

$$K(X) = 1.502 \times 10^4$$

 $K(x) = 7.132 \times 10^3$

<---milkshake quality indicators, optimal and initial</p>

Monitor the value of K (X) - the optimal recipe and technology has the largest value

optimized formulation

$$Ko(X) = 0.999$$

$$K\pi(X) = 520.665$$

$$Ky(X) = 28.888$$

$$Kc(X) = 30$$

original recipe

$$Ko(x) = 0.98$$

$$K\pi(x) = 411.18$$

$$Ky(x) = 17.701$$

$$Kc(x) = 141.981$$