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Non-circular cylindrical vessels with quasi-ellipsoidal ends

Krivoshapko S.N. Ivanov V.N,Encyclopedia of Analytical Surfaces ,Springer,2015

https://en.wikipedia.org/wiki/Superellipse

The forming of quasi-ellipsoidal surfaces is based on
mathematical transformations applied to a canonic equation
of ellipsoid. V.A. Nikityuk picked up three groups of quasi-
cllipsoidal surfaces.

(1) Quasi-ellipsoidal surfaces with three values of the
semi-axes are given by an equation:
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where n, m, k are positive numbers.

A quasi-ellipsoid of this type has a closed surface with
maximal dimensions along the axes x, y, z equal to 2a, 2b,
2¢, accordingly.

(2) Quasi-ellipsoidal surfaces with six values of the semi-
axes are given by an equation:
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where n, m, k are positive numbers, Q) is a Heaviside
Sunction: &$) = 0 if { < 0 and &K¢) = 1 if £ > 0. Application
of Heaviside function gives an opportunity to introduce six
different values of semi-axes of the quasi-ellipsoidal surface:
a; when x <0 and a; when x > 0; b, when y <0 and b, when
y>0: ¢, when z <0 and ¢, when z > 0. The quasi-ellipsoid
has a closed surface with maximum dimensions along the

B Quasi-ellipsoidal Surface with Three Values
of Semi-axes

A quasi-ellipsoidal surface with three values of semi-axes is
a closed surface given by an implicit equation:
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where n, m, k are positive numbers.
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axes x, v, and z equal to sum of the semi-axes: a, + a,
by + by and ¢, + ¢;, accordingly. If a quasi-ellipsoidal sur-
face has different values of the semi-axes a, b, ¢, then it
will not be symmetrical relatively to the coordinate planes
vOz, xOz and xOy. The values of the exponents of n, m,
k define the sign of the curvature of the segments of the
surface and the existence of ribs.

(3) Quasi-ellipsoidal surfaces with cylindrical insertions
along the axis z may be given by an equation:
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where n, m, k are positive numbers, ¢) is a Heaviside
function; &) = 0if < 0 and ) = 1 if > 0. Application
of Heaviside function gives an opportunity to introduce six
different values of semi-axes of the quasi-ellipsoidal surface:
a, when x <0 and a; when x > 0; by, when y <0 and b, when
vy > 0: ¢; when z < 0 and ¢; when z > 0. The quasi-ellipsoid
has a closed surface with maximum dimensions along the
axes x, y and z equal to sum of the semi-axes: a; + a,
by + by, and ¢; + €5 + ¢y, accordingly.

A quasi-cllipsoid of this type may contain a cylindrical
insertion by the length ¢, oriented along the axis z. A
director line of the cylindrical part oriented along the axis
z coincides with the line of the quasi-ellipsoid-—the plane
X0y intersection.

A quasi-¢llipsoid of this type has maximum dimensions
along the axes x, y, z equal to 2a, 2b, 2¢, accordingly, where
a, b, ¢ are three semi-axes of a quasi-ellipsoid.

In Fig. I, the quasi-cllipsoidal surface with semi-axes
a=2m,b=1m,c=3mand with the values of the degrees
n=m=25; k=025 is shown. The net on the surface is
formed by parallels obtained by crossings of the surface by
the planes that are perpendicular to the axis Oz, and by
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The vessel consists of a shell with a non-circular cylindrical surface and
a quasi-ellipsoidal, smoothly bonded bottoms with a shell.
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= - [Approximation of Heaviside function]
1 -100-x
+e

t0:=time (1)

[f]l—Dragilev's Method

1.Find the line of intersection of the given surface with the plane Y=0

n n n
|x1| |x2| x3-9[x3]+|[x3+d]-e[—x3—d]|
. : + -1
1 a b c
f =X, [y‘paBHeHI/Ie TOPU3OHTAJNLHON IIIOCKOCTH Z=O]

For the starting point of the surface we take a point lying on the axis OY

XO =a - 9 - 9
1 X02.=1O X0 3.=10
tmin:=0 tmax:=3 At:=0.1 Ni= tmax N=30
© At

Bl:= submatrix(D(X0, tmin , tmax , N), 1, N, 2, 4) (MaTpuua xoopimHaT HalimeHHON KPUBOI|

augment (col (B1, 1), col(B1, 3)]
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2 .Through each point hold the plane x3 = C and find the line of intersection
of that plane with a given surface.These lines represent a given surface.

tmin:=0 tmax:=6.5 At:=0.1 N1:= tmax N1=65
oAt




{Code for multi-colored lines]

for kel,3..N
[f pi=X 3]= "BTopoe ypabBHeHue"
-0.8232 -0.4194 0.3827

y=| 0.5677 -0.6187 0.543
0.009 0.6643 0.7474

"HaxonouM JIMHUM I[epecedeHMs IIJIOCKOCTEM C BallaHHOM [OBEpPXHOCThH "

T
Lpy = submatrix D[row(Bl, k) , 0, tmax, Nl],l, N1,2,4]vy6
for iel..N1

A]cif=submatrix[pr'k, 1,1, 1, 3]

r

"CosmaeM MaTpully BCeX JIMHUM ceTku"
if k=1

L i’=[A k i]

else

L .:=eval
i

stack[Lj_,[A]<i”

(Code for single-color lines]

for kel,3..N
[f’2=2<3]="BTopoe ypaBHeHue"
-0.8232 -0.4194 0.3827

y:==| 0.5677 -0.6187 0.543
0.009 0.6643 0.7474

"HaxoOouM JIMHUM [epecedeHMrs JIOCKOCTEM C BallaHHOM [OBEPXHOCThI "

T
pr]6=submatrix D[row(Bl, k) , 0, tmax, Nl],l ,N1,2,4)v 6

for iel..N1
Alcif=submatrix[pr'k, 1,1, 1, 3]

"K sToM MaTpuie nodamijsgeM 5 CTPOK KaBHUYEK,YTOOBl LBET JIMHUM NOBTOpAJiCA"

T

T 10 10 10 10 10

S i=|ALy 107107 10 10 10

"CosmaeM MaTpuUlly BCeX JIMHUM CeTKU"

if k=1
Li=Sxi
else
L.:=stack[L. , S .]
i i ki

1:=1..(2:N1+20-1)



(Non—circular cylindrical vessel]

if (£>N1)A(t<N1+20)
It:=N1

else )
if £t>N1+20 time(1)-t0=2.0107 min

t:=2-N1+20-t
else
t=t
eval [mat2sysl[L t]]




