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Moving Load
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College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R.
China.
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With the continuous development of industry, variable-section beams and high speed moving loads with large
mass are widely used. Thus, it is of great significance to study the vibration response of variable-section beam
with the consideration of inertia effect. Most past research focuses on the vibration response on uniform beams
considering inertial effects, but there is little research on the vibration response of moving loads on variable section
beam considering the inertia effect. In this paper, a variable section beam is simplified as a multi-stage ladder
beam. Using the Euler-Bernoulli beam model, free-vibration characteristics and forced vibration characteristics
of cantilever ladder beam are analysed. Following this step the vibration response considering the influence of
the inertia effect is studied and compared with the situation that does not consider the influence of inertia effect.
The results show that the mass, velocity, and acceleration of moving loads influence the effect of inertia on the
response. Mass is the main factor affecting the results. The inertia effect caused by the acceleration and velocity
can be ignored when the mass of moving load is small. The results have good engineering applicability.

NOMENCLATURE

a Lateral acceleration due to inertial effects.
acc Lateral acceleration of beam.
A Cross-sectional area of beam.
[C] Generalized damping matrix.
d Inner diameter.
D Outer diameter.
dis Lateral displacement of beam (In numerical

calculation).
E Elastic modulus.
[F ] Generalized matrix of forces.
g Acceleration of gravity.
[H] Transfer matrix.
Hm Dynamic response considering inertial effect.
Hn Dynamic response without considering inertial

effect.
i The i-th cross section of beam.
[I] Unit matrix.
j The j-th natural frequency.
k Intermediate variable.
[K] Generalized stiffness matrix.
L Length of beam.
Lap Laplace transform.
M Mass of moving load.
[M ] Generalized mass matrix.
ρ Density of beam.
q Generalized coordinate.
[Q] Generalized displacement matrix of beam.
R Mode ratio.
s Variable in Laplace transform.
t Time variable.
µ Displacement of moving load.
V Velocity of moving load.
vel Lateral velocity of beam.
w Circular frequency.

y Lateral displacement of beam (In vibration
formula).

Y Laplace transform function.
λ Inertia influence coefficient.
φ Regular modal function.
φ Modal function.
θ Rotation of the beam.
[η] Connection matrix.

1. INTRODUCTION

The dynamic problems of variable cross-section beams un-
der moving loads are very common in engineering practice,
such as vehicle-bridge coupling vibration, track vibration, pro-
jectile barrel coupling vibration, and fluid-solid coupling vi-
bration. With the development of modern industry, the applica-
tion of high-speed, large-acceleration, and large-scale moving
components and complex structures in engineering are increas-
ing. It is of great significance to analyse the vibration response
of variable cross-section beams and to consider the influence
of inertial effects of moving loads on vibration response.

Dynamic analysis of beams under moving loads has always
been an important issue in structural engineering. A lot of
work on the vibration of beams under moving loads has been
reported.1, 2 Museros and Moliner3 studied the vibration of
simply supported beams under a constant moving load and pro-
posed a new approximation method to estimate the maximum
acceleration. Using modal superposition, Sudheesh Kumar4

proposed a simple and compact formula to determine the free-
vibration response of a uniform beam under a single moving
load. Using Laplace transform, Johansson5 obtained a closed
solution to the vibration response of the Euler-Bernoulli beam
under constant moving loads. X Wang6 analysed the dynamic
behaviour of functionally graded material (FGM) beams un-
der a moving point load. Using the Euler-Bernoulli beam hy-
pothesis, Dimitrovoá7 obtained a new formula for the critical
velocity of a uniformly moving load. It is assumed that the
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load is traversing a beam supported by a foundation of a fi-
nite depth. Simplified plane models of the foundation are pre-
sented for the finite and infinite beams. Based on the Euler-
Bernoulli beam hypothesis and von Kármán geometric nonlin-
ear theory, Tao8 studied the nonlinear dynamic behaviours of
fibre metal laminated beams under moving loads in thermal
environments. Based on the Biot consolidation theory and the
Timoshenko beam model, Keivan9 analysed the dynamic re-
sponse of porous elastic beams under and with consideration
to the moving point of shear deformation. In consideration
of Poisson’s effect, shear deformation, and rotary inertia, Mo-
hammad H. Kargamovin10 analysed the dynamic response of a
delaminated composite beam under the action of moving oscil-
latory mass. HB Khaniki11 analysed the dynamic behaviour of
multi-layered viscoelastic nanobeams resting on a viscoelas-
tic medium with a moving nanoparticle. The influences of
the nonlocal parameter, stiffness and damping parameter of
medium, internal damping parameter, and number of layers are
studied while the nanoparticle passes through. Based on the
modified couple stress theory, the dynamic behaviour of mul-
tilayered microbeam systems with respect to a moving load is
analysed.12

In research on non-uniform beams, HB Khaniki analysed
the mechanical behaviour of non-uniform small scale beams
in the framework of nonlocal strain gradient theory,13 and con-
cluded that having a non-uniform cross section in nonlocal
strain gradient beams could lead to significant changes in me-
chanical behaviour of such structures. Khaniki14 analysed non-
uniformity effects on free vibration analysis of functionally
graded beams. Jiang and Bert15 studied the vibration behaviour
of step beams under various boundary conditions. In this case,
the frequency can be derived from a fourth-order determi-
nant equal to zero, from which the free-vibration mode can be
solved. Naguleswaran16, 17 successfully derived the more com-
plex geometry of the beam vibration modes. Dong18 analysed
the vibration characteristics of the stepped beam using the Tim-
oshenko beam model, including the effects of shear deforma-
tion and rotational inertia. Wu and Hsu19 developed a numeri-
cal procedure that can effectively be used to calculate the nat-
ural frequency and mode shapes when considering the mass-
concentration beam vibrations. Lu20 developed a composite
element method that combines the finite element method with
the classical beam theory and proved to be correct, introduc-
ing the free and forced vibrations of beams with either single
or multiple-step changes using the composite element method
(CEM). Using a numerical program proposed by Xu,21 some
existing numerical problems that arise in the calculation of the
high-order mode of the ladder beam are avoided. The lowest
three natural frequencies of a multistep up and down cantilever
beam using a global Rayleigh-Ritz formulation, component
modal analyses (CMA), ANSYS, and experimental are eval-
uated.22 Adomian decomposition method (ADM) was used to
obtain the effect of step ratio and step location on a beam’s nat-
ural frequencies.23, 24 The free and forced vibrations of beams
with either single or multiple-step changes using the composite
element method (CEM) were introduced by Lu.25

It can be seen that although researchers have deeply studied
the dynamic response of moving loads on uniform beams and
the free-vibration characteristics of stepped beams, few stud-
ies have investigated the dynamic response of moving load on
stepped beams considering the inertial effects. In this paper,

the response of moving load a on ladder beam considering the
inertial effect is analysed and compared with the vibration re-
sponse of moving load without considering the inertial effect.
The factors that affect the inertial effect are also discussed.

2. THE NATURAL FREQUENCY AND MODE
SHAPE FUNCTION OF LADDER CAN-
TILEVER BEAM

When analysing the vibration characteristics of variable
cross-section beams, the analysis may be complicated due to
the irregularity of the cross-section structure making it very
difficult to obtain accurate analytical solutions. The traditional
method of simplifying the variable cross-section beam into an
equivalent cross-section beam may produce large errors. How-
ever, if the variable section beam is simplified as a multi-step
ladder beam, the result will be calculated with great precision
and the simplification error will be reduced. Simplified form is
shown in the figure below.

Therefore, it is of great significance to analyse the vibration
characteristics of a stepped beam. This paper takes the three-
step cantilever beam as an example to analyse the free vibration
characteristics and forced vibration characteristics.

The model analysed in this paper is as follows:
From the theory of vibration mechanics, the lateral free vi-

bration equation of each section is:

∂2
(
EIi

∂2y(x,t)
∂x2

)
∂x2

+ ρAi
∂2y(x, t)

∂t2
= 0, i = 1,2,3. (1)

Assuming the whole system performs harmonic vibration at
the same frequency, separation of variables are used to separate

y(x, t) = φi(x) sin(wt). (2)

Substituting Eq. (2) into Eq. (1) gives

φ4i (x)− k4i φi(x) = 0; (3)

k4i =
ρAi
EIi

ω2. (4)

Laplace transform the above formula to get:

Lap [φi(x)] =
s3Y (0) + s2Y ′(0) + sY ′′(0) + Y ′′′(0)

s4 − k4i
. (5)

Inverse Laplace transform both sides of Eq. (5) and combine
like terms to get:

φi(x) = φi(0)S(kix) + k−1i φ′i(0)T (kix)+

k−2i φ′′i (0)U(kix) + k−3i φ′′′i (0)V (kix). (6)

The S, T , U , V are on behalf of the Krylov Function. The
expressions are as follows:

S(kix) =
1

2
(cosh(kix) + cos(kix)) ; (7a)

T (kix) =
1

2
(sinh(kix) + sin(kix)) ; (7b)

U(kix) =
1

2
(cosh(kix)− cos(kix)) ; (7c)
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V (kix) =
1

2
(sinh(kix)− sin(kix)) . (7d)

The relationship between the left and right ends of i-th sec-
tion of the ladder beam can be expressed by Eqs. (6) and
(7).The derivation of Eq. (6) are as follows:

φ′i(x) = kiφi(0)V (kixi) + φ′i(0)S(kixi)+

k−1i φ′′i (0)T (kixi) + k−2i φ′′′i (0)U(kixi); (8a)

φ′′i (x) = k2i φi(0)U(kixi) + kiφi(0)V (kixi)+

φ′′i (0)S(kixi) + k−1i φ′′′i (0)T (kixi); (8b)

φ′′′i (x) = k3i φi(0)T (kixi) + k2i φ
′
i(0)U(kixi)+

kiφ
′′
i (0)V (kixi) + φ′′′i (0)S(kixi). (8c)

The boundary conditions of the left and right ends of the i-
th section can be obtained by combining Eqs. (6), (7), and (8),
which can be expressed in matrix form:

φi(Li)
φ′i(Li)
φ′′i (Li)
φ′′′i (Li)

 = H [kiLi]


φi(0)
φ′i(0)
φ′′i (0)
φ′′′i (0)

 . (9)

The matrix form of H[kiLi] is as follows:

H[kiLi] =
S(kiLi)

T (kiLi)
ki

U(kiLi)
k2i

V (kiLi)
k3i

V (kiLi)ki S(kiLi)
T (kiLi)
ki

U(kiLi)
k2i

U(kiLi)k
2
i V (kiLi)ki S(kiLi)

T (kiLi)
ki

T (kiLi)k
3
i U(kiLi)k

2
i V (kiLi)ki S(kiLi)

 . (10)

At the connection part between each beam, displacement,
rotation angle, moment, and shear satisfy the condition of dis-
placement continuity and compatibility of stress as shown by:

φi−1(Li−1) = φi(0); (11a)

φ′i−1(Li−1) = φ′i(0); (11b)

EIi−1φ
′′
i−1(Li−1) = EIiφ

′′
i (0); (11c)

EIi−1φ
′′′
i−1(Li−1) = EIiφ

′′′
i (0). (11d)

The connection matrix of each segment of the ladder beam
is:

[ηi] =


1 0 0 0
0 1 0 0

0 0 Ii−1

Ii
0

0 0 0 Ii−1

Ii

 . (12)

Through the above analysis and derivation, the whole trans-
fer matrix of the ladder beam can be obtained:

φi(Li)
φ′i(Li)
φ′′i (Li)
φ′′′i (Li)

 = H[kiLi][ηi]H[ki−1Li−1][ηi−1] · · ·

· · ·H[k1L1]


φ1(0)
φ′1(0)
φ′′1(0)
φ′′′1 (0)

 . (13)

In this paper, taking the three-step cantilever beam as an ex-
ample, i = 3 in the above formula. The boundary condition of
the cantilever beam is that the left end which is the fixed end
and the right end which is the free end. The displacement and
the rotation angle of the fixed end are 0, the moment and the
shear of the free end are 0:

φ′′3(L3) = 0; (14a)

φ′′′3 (L3) = 0; (14b)

φ1(0) = 0; (14c)

φ′1(0) = 0. (14d)

The matrix [Q] is defined as:

[Q] = H[kiLi][ηi]H[ki−1Li−1][ηi−1] · · ·H[k1L1]. (15)

From which one can derive:
φ3(L3)
φ′3(L3)

0
0

 =


Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44




0
0

φ′′1(0)
φ′′′1 (0)

 . (16)

It can be derived from the theory of linear algebra:[
Q33 Q34

Q43 Q44

] [
φ′′1(0)
φ′′′1 (0)

]
=

[
0
0

]
. (17)

Since the φ′′1(0) and φ′′′1 (0) could be any value, the determi-
nant of matrix [Q] in Eq. (17) is 0:∣∣∣∣Q33 Q34

Q43 Q44

∣∣∣∣ = 0. (18)

The circular frequency wj is the only variable in [Q]. Calcu-
lating the above determinant, the circular frequency wj can be
obtained. Substituting wj into Eq. (15) to get the correspond-
ing [Q] Substituting [Q] into Eq. (18), the ratio of φ′′1j(0) and
φ′′′1j(0) is obtained as:

Rj =
φ′′1j(0)

φ′′′1j(0)
. (19)

Substituting the Rj into Eq. (16), the shape function of the
third section beam can be obtained as:

φ3j = Q13Rj +Q14. (20)

The mode shape functions of different sections of beams are
different. By this method, the mode shape functions of each
beam can be obtained. Because of space limitations, not all
segments are illustrated. Using mode shape function to solve
the generalized mass and the generalized stiffness, from the
orthogonality of mode shape function:

Mj =

3∑
i=1

li∫
li−1

ρAiφ
2
ij(x)dx =

l1∫
0

ρA1φ
2
1j(x)dx+

l2∫
l1

ρA2φ
2
2j(x)dx+

l3∫
l2

ρA3φ
2
3j(x)dx; (21a)
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Figure 1. Variable section beam simplifies to multiple-step beam.

Figure 2. Three-step cantilever beam.

Kj =

3∑
i=1

li∫
li−1

EIiφ
′′
ij

2
(x)dx =

l1∫
0

EI1φ
′′
1j

2
(x)dx+

l2∫
l1

EI2φ
′′
2j

2
(x)dx+

l3∫
l2

EI3φ
′′
3j

2
(x)dx. (21b)

The generalized mass and generalized stiffness are ex-
pressed in matrix form:

[M ] =


M1 0 0 0 0
0 M2 0 0 0
0 0 M3 0 0

0 0 0
. . . 0

0 0 0 0 Mj

 ; (22)

[K] =


K1 0 0 0 0
0 K2 0 0 0
0 0 K3 0 0

0 0 0
. . . 0

0 0 0 0 Kj

 ; (23)

and the regular modal function is obtained:

φij =
φij√
Mj

. (24)

This method can solve the natural frequency and mode
shape function of the stepped beam with arbitrary boundary
conditions.

Figure 3. Axial movement of beam elements.

3. FORCED VIBRATION REPONSE CALCU-
LATION OF STEPPED BEAM UNDER
MOVING LOAD WITH INERTIAL EFFECT

When considering the inertia effect of moving load acting
on the beam, select a micro-segment of the bending beam, the
movement state is as follows:

It can be seen from Fig. 3, θ is the angle of the cross section;
v is the velocity of the beam moving in the axial direction; ay
is the lateral acceleration of the cross section due to the bend-
ing deformation of the beam; ax is the lateral acceleration of
the cross section due to the bending deformation of the beam;
aτ is the tangential acceleration of the cross section moving in
the axial direction; an is the normal acceleration of the cross
section moving in the axial direction; and ak is the Coriolis ac-
celeration caused by the interaction between rotational angular
velocity and axial motion velocity.

According to the knowledge of material mechanics and the-
oretical mechanics:

θ =
∂y

∂x
; (25a)

ay =
∂2y

∂t2
; (25b)

aτ =
dv

dt
; (25c)

an = v2
∂2y

∂x2
; (25d)

ak = 2v
∂θ

∂t
= 2v

∂2y

∂x∂y
. (25e)

The actual lateral acceleration of the cross section is as fol-
lows:

a = ay + aτ sin θ + an cos θ + ak cos θ

= ay + aτθ + an + ak

=
∂2y

∂t2
+
dv

dt

∂y

∂x
+ v2

∂2y

∂x2
+ 2v

∂2y

∂x∂t
. (26)
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Considering the influence of gravity acceleration, the actual
force of the moving load is:

P (x, t) = m ·
{
g −

[
∂2y

∂t2
+ 2

∂2y

∂x∂t
µ̇(t)+

∂2y

∂x2
µ̇2(t) +

∂y

∂x
µ̈(t)

]}
. (27)

Substituting Eq. (27) into the lateral vibration equation of
the ladder beam:

∂2
(
EIi

∂2y(x,t)
∂x2

)
∂x2

+ ρAi
∂2y(x, t)

∂t2
=

P (x, t)δ(x− µ(t)), i = 1,2,3; (28)

where δ(x− µ(t)) is the Dirichlet function, it is known that:{
x = µ(t), δ(x− µ(t)) = 1
x 6= µ(t), δ(x− µ(t)) = 0

. (29)

Using the method of separation of variables and the orthog-
onality of modal functions, substitute Eqs. (2), (21), and (24)
for:

q̈ij(t) + w2
j qij(t) = m

{
g −

∞∑
n=1

[2µ̇(t)φ′in(ξ)q̇in(t)+

µ̇2(t)φ′′in(ξ)qin(t) + µ̈(t)φ′in(ξ)qin(t)+

φin(ξ)q̈in(t)]}φij(ξ). (30)

In Eq. (30), i represents the i-th section and j represents the
j-th natural frequency. Substituting Eq. (8), the above formula
is expressed in matrix form:

[M ]{q̈}+ [C]{q̇}+ [K]{q} = [F ]. (31)

among them being:

[I] = diag(1, 1, . . .)j ; (32a)

[φij ] = [φj1(ξ), φj2(ξ), φj3(ξ), φj4(ξ), . . .]
T ; (32b)

[M ] = [I] +m · [φij(ξ)] · [φij(ξ)]T ; (32c)

[C] = 2m · µ̇(t)[φij(ξ)][φ′ij(ξ)]T ; (32d)

[K] = diag[w2
j ] +m · µ̈(t) · [φij(ξ)][φ′ij(ξ)]T

+m · µ̇2(t) · [φij(ξ)][φ′′ij(ξ)]T ; (32e)

[F ] = m · g · [φij(ξ)]. (32f)

Loads with inertia effects form an additional generalized
mass matrix, generalized stiffness matrix, and generalized
damping matrix. As the force is a time-varying force, the ad-
ditional matrix is time-varying, so it is difficult to get analytic
solution. µ(t) is a function of t and φij(ξ) is a function of ξ
that can be transformed into a function of t. In this paper, the
Newmark algorithm is used to calculate the response. In or-
der to simplify the calculation process, on the premise of the
accuracy of calculations, use the modal truncation method to
intercept the first four natural frequencies for analysis. Using
the continuity of displacement, velocity, and acceleration, the
forced response is obtained as:

disi−1(Li−1) = disi(0); (33a)

Figure 4. The model to be analysed.

veli−1(Li−1) = veli(0); (33b)

acci−1(Li−1) = acci(0). (33c)

where disi−1(Li−1) stands for the displacement of the right
end of the (i − 1)-th section, and disi(0) stands for the dis-
placement of the left end of the i-th section. Velocity and ac-
celeration are also used in similar expressions.

Define the inertia influence coefficient using:

λ =

∣∣∣∣Hm −Hn

Hn

∣∣∣∣× 100%; (34)

where λ is inertia influence coefficient, Hm is dynamic re-
sponse considering inertial effect, andHn is dynamic response
without considering inertial effect.

The effect of inertia effect on vibration response can be anal-
ysed by judging the numerical magnitude of λ.

4. EXAMPLE ANALYSIS AND DISCUSSION

4.1. Calculation of The Natural Frequencies
and Modes Of The Ladder Cantilever
Beam

Substituting specific values, the elastic modulus E = 2.1 ∗
1011 Pa, density ρ = 7800 kg/m3. The model for be analysis
is shown in Fig. 4.

After changing the inner diameter, outer diameter, and
length of the stepped beam, calculating the natural frequen-
cies, and comparing with the results of ANSYS, the overall
results are shown in Table 1.

The results calculated using the transfer matrix method are
similar to those calculated by the finite element method. The
relative error of the first natural frequency is smaller than 0.3%,
the biggest error is less than 5 %. The results show the accu-
racy of the calculation using the transfer matrix method.

ANSYS uses the finite-element method to calculate the nat-
ural frequency of stepped beam. While the stepped beam is
considered as a continuum in theoretical calculation, due to
different calculation methods, the results have deviation. The
accuracy of ANSYS meshing may also affect the calculation
results.

Substituting D1 = 0.4 m, d1 = 0.16 m, D2 = 0.2 m,
d2 = 0.1 m, D3 = 0.14 m and d3 = 0.04 m, the shape
function is as shown in Fig. 5.

The vibration mode function image of the stepped cantilever
beam is very similarto the vibration mode function image of
constant section beam. When the mode shape function is close
to the free end, the ”steepness” of the mode shape’s function
increases. This is because the section modulus of the second
beam and the third beam are relatively small in this example.
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a) The first natural frequency b) The second natural frequency

c) The third natural frequency d) The forth natural frequency

Figure 5. The first four mode shapes of the stepped cantilever beam.

Table 1. Natural frequency of cantilevered ladder beam.

Length and The result of The result of Relative error (%)
diameter (m) MATLAB (Hz) ANSYS (Hz)

D1=0.40; d1=0.16; D2=0.20; d2=0.10;
D3=0.14; d3=0.04; L1=2.00; L2=4.00;
L3=2.00.

5.12 5.11 0.20
23.88 27.73 0.63
51.87 51.14 1.43
85.89 83.93 2.34

D1=0.45; d1=0.18; D2=0.25; d2=0.12;
D3=0.20; d3=0.06; L1=2.00; L2=4.00;
L3=2.00.

5.68 5.67 0.23
28.78 28.49 1.00
63.63 62.35 2.05
108.32 104.95 3.21

D1=0.50; d1=0.20; D2=0.30; d2=0.14;
D3=0.24; d3=0.08; L1=2.00; L2=4.00;
L3=2.00.

6.67 6.65 0.29
33.04 32.60 1.34
73.16 71.29 2.63
128.80 123.51 4.28

D1=0.40; d1=0.16; D2=0.20; d2=0.10;
D3=0.14; d3=0.04; L1=2.00; L2=3.00;
L3=2.00.

7.31 7.29 0.23
30.59 30.35 0.80
63.43 62.24 1.91
111.30 108.32 2.75
10.95 10.92 0.29
40.35 39.91 1.11
79.20 77.34 2.40
156.72 151.64 3.35

4.2. The Influence of Inertia on Vibration
Response

Newark method is used to calculate the response. In the
calculation α = 0.8, β = 0.8, the gravitational acceleration
g = 10, change the mass, velocity, and acceleration of the
moving load to analyse the change of inertial influence coeffi-
cient.

4.2.1. The Impact of the Mass and Velocity of Moving
Load on Response Results

Assume that the moving load performs a uniform motion on
the beam. Change the mass and velocity of the moving load.
When the moving load moves to the free end, record the value
of the lateral displacement of the free end at this moment. The
results are shown in Table 2.
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Table 2. Comparison of response results considering different masses and
velocities of moving load.

L1= 2 m, L2= 4 m, L3= 2 m, D1= 0.4 m, d1= 0.16 m, D2= 0.2 m,
d2= 0.1 m, D3= 0.14 m, d3= 0.04 m

Displacement/ mm Inertial
V M Only Considering influence

(m/s) (kg) considering inertia coefficient
gravity effect λ

10 5 -0.2790 -0.2789 0.05%
20 -1.1162 -1.1138 0.21%
50 -2.7904 -2.7730 0.62%
100 -5.5808 -5.4973 1.50%

20 5 -0.2677 -0.2669 0.31%
20 -1.0708 -1.0581 1.19%
50 -2.6770 -2.6036 2.74%
100 -5.3540 -5.0918 4.90%

30 5 -0.2889 -0.2876 0.45%
20 -1.1554 -1.1365 1.64%
50 -2.8885 -2.7750 3.93%
100 -5.7770 -5.3494 7.40%

40 5 -0.2919 -0.2894 0.86%
20 -1.1674 -1.1292 3.27%
50 -2.9186 -2.6967 7.60%
100 -5.8371 -5.0413 13.63%

50 5 -0.2603 -0.2571 1.20%
20 -1.0411 -0.9939 4.53%
50 -2.6027 -2.3366 10.22%
100 -5.2054 -4.2814 17.75%

60 5 -2.2263 -2.1926 1.51%
20 -0.8905 -0.8403 5.64%
50 -2.2331 -1.9542 11.96%
100 -4.4527 -3.5142 21.08%

70 5 -1.8593 -1.8268 1.75%
20 -0.7437 -0.6960 6.41%
50 -1.8593 -1.6008 13.90%
100 -3.7187 -2.8604 23.08%

80 5 -0.1550 -0.1521 1.87%
20 -0.6201 -0.5777 6.83%
50 -1.5502 -1.3233 14.64%
100 -3.1003 -2.3547 24.05%

90 5 -0.1333 -0.1306 2.03%
20 -0.5333 -0.4945 7.28%
50 -1.3334 -1.1273 15.46%
100 -2.6667 -1.9968 25.12%

In order to observe the data more intuitively, the data of the
same mass corresponding to different velocities are extracted
and as shown in Fig. 6.

It can be seen from Fig. 6 that both mass and velocity af-
fect the value of inertia influence coefficient. The greater the
mass, the greater the value of inertia influence coefficient. The
greater the velocity, the greater the value of inertia influence
coefficient. The change of mass can significantly change the
inertia influence coefficient. It can be seen from Fig. 6 that
when the mass of moving load is large, the influence of iner-
tial effect on vibration response can’t be neglected regardless
of the velocity of the moving load. When the mass of moving
load is small, the effect of inertia on vibration response at low
speed can be neglected. However, for objects moving at high
speed, as shown in the figure, when the mass of moving load is
20 kg and the moving speed is 90 m/s, the coefficient of iner-
tia will exceed 5%, the inertia effect to the vibration response
influence can’t be neglected in this situation.

4.2.2. The Effect of Acceleration on the Coefficient of
Inertia Effect

The acceleration analysed in this paper is uniform acceler-
ation. The influence of inertia on vibration response is con-

Figure 6. Inertial effect coefficients of moving loads with different masses
and velocities.

Table 3. Response results of moving loads with different masses in the process
of acceleration.

L1= 2 m, L2= 4 m, L3= 2 m, D1= 0.4 m, d1= 0.16 m, D2= 0.2 m,
d2= 0.1 m, D3= 0.14 m, d3= 0.04 m

Displacement/ mm Inertial
V M A Only Considering influence

(m/s) (kg) (m/s2) considering inertia coefficient
gravity effect λ

10 5 0 -0.2790 -0.2789 0.05%
10 -0.2771 -0.2766 0.18%
20 -0.2742 -0.2733 0.33%
30 -0.2677 -0.2666 0.41%
40 -0.2663 -0.2652 0.41%
50 -0.2688 -0.2676 0.45%
60 -2.7230 -2.7092 0.51%

50 0 -2.7904 -2.7730 0.62%
10 -2.7711 -2.7226 4.85%
20 -2.7422 -2.6525 3.27%
30 -2.6769 -2.5081 6.31%
40 -2.6628 -2.5635 3.73%
50 -2.6881 -2.5786 4.07%
60 -2.7230 -2.5984 4.58%

sidered when the moving load performs uniform acceleration
motion and uniform deceleration respectively. Considering
the uniform acceleration movement with an initial velocity of
10 m/s and the uniform deceleration movement with an initial
velocity of 80 m/s, record thelateral displacement of the free
end when the moving load moves to the free end. Take accel-
eration as the only variable, collecting multiple sets of data for
analysis. The results of uniform acceleration motion are shown
in Table 3.

The results of uniform deceleration motion are shown in Ta-
ble 4.

In order to observe the data more intuitively, the data of
the same mass corresponding to different accelerations are ex-
tracted and shown in Figs. 7 and 8.

Under the condition of uniform acceleration, the inertia in-
fluence coefficient increases when the absolute value of accel-
eration increases. Under the condition of uniform deceleration,
as the value of negative acceleration changes, the inertial influ-
ence coefficient changes very little.

It can be seen from Figs. 7 and 8 that when the mass of mov-
ing load is small, the effect of acceleration on the coefficient
of inertia is negligible. In all situations, the coefficient of iner-
tia does not exceed 3%. When the velocity of moving load is
small, the coefficient of inertia does not even exceed 1%, and
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Table 4. Response results of moving loads with different masses in the process
of deceleration.

L1= 2 m, L2= 4 m, L3= 2 m, D1= 0.4 m, d1= 0.16 m, D2= 0.2 m,
d2= 0.1 m, D3= 0.14 m, d3= 0.04 m

Displacement/ mm Inertial
V M A Only Considering influence

(m/s) (kg) (m/s2) considering inertia coefficient
gravity effect λ

80 5 0 -0.1550 -0.1521 1.87%
-10 -0.1561 -0.1532 1.86%
-20 -0.1607 -0.1577 1.87%
-30 -0.1617 -0.1587 1.86%
-40 -0.1626 -0.1597 1.78%
-50 -0.1703 -0.1640 3.70%
-60 -0.1679 -0.1648 1.85%

50 0 -1.5502 -1.3233 14.64%
-10 -1.5611 -1.3348 14.50%
-20 -1.6067 -1.3710 14.67%
-30 -1.6166 -1.3822 14.50%
-40 -1.6261 -1.3930 14.33%
-50 -1.6703 -1.4288 14.46%
-60 -1.6786 -1.4394 14.25%

Figure 7. Uniform acceleration motion with an initial velocity of 10 m/s.

the effect of inertia on vibration response can be neglected.
When the mass of moving load is large, increasing the pos-

itive acceleration can increase the coefficient of inertia from
0.62% to 4.58% when the velocity is 10 m/s. When the veloc-
ity is 80 m/s, changing the magnitude of acceleration has al-
most no effect on the coefficient of inertia, the value is around
14.5%. In this situation, the influence of the coefficient on the
vibration response must be considered.

In general, when the mass of moving load is large, the in-
fluence of its inertial effect on the vibration response can’t be
ignored. The coefficient of inertia increases when the velocity
of moving load increases. With the increasing of the mass of
moving load, the effect is more significant. Acceleration has
little effect on inertia influence coefficient in this example, it
is only effective at changing the inertia influence coefficient
when the mass is large and the velocity is small.

5. CONCLUSION

In this paper, taking the three-step cantilever beam as an ex-
ample, the calculation of natural frequency and the vibration
response of moving load considering of inertial effect are car-
ried out. Conclusions are as follows:

1. The mode shape function of the ladder beam is similar
to the mode shape function of the constant section beam.

Figure 8. Uniform deceleration motion with an initial velocity of 80 m/s.

When the sectional moment of inertia decreases, the im-
age of the mode shape function is steeper.

2. The mass, velocity, and acceleration of the moving load
all affect the coefficient of inertia. The greater the mass
and speed of the moving load, the greater the coefficient
of inertia.

3. When the moving load mass is large and when the ef-
fect of inertia on vibration response is negligible when
the moving speed and the moving acceleration are rel-
atively small. The influence of inertia on the vibration
response can’t be neglected when the velocity or acceler-
ation is large. When the moving load mass is small, the
effect of the inertia effect on the vibration response can
generally be ignored. Although the inertia influence coef-
ficient increases with the increasing of velocity and accel-
eration, it usually does not exceed 5%. Thus, the mass of
the moving load is the key factor to change the coefficient
of inertia.
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