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1. PROBLEM

Consider the Cauchy problem for the system of ordinary differential equations (ODEs)

(1)

Here, t is a scalar argument and   are M�dimensional vector func�
tions. The numerical solution of this problem is still important and not simple. For example, assume that
(1) describes the combustion reaction of methane in a coal mine. The fire originates from a random spark
and at a low concentration of methane at first the fire is slow (it does not yet pose a serious danger). How�
ever, at some point in time the burning can dramatically accelerate and transit to detonation; this causes
death and destruction. Identifying the instant of the transition is an ill�conditioned problem. Evidently, it
is necessary to be able to solve such problems with the guaranteed mathematical error estimation.

The difficulties of problem (1) can be various: ill conditionality (integral curves quickly diverge), stiff�
ness (integral curves quickly converge), and strong oscillations. In practice these difficulties often are not
distinguished and are spoken of as “stiffness” [1]. All these difficulties are characterized by the large right�
hand sides of (1) and the rapid changes of functions at some points in time. In the grid calculations one
usually tries to find these points and significantly refine the grid steps in them. This is made by programs
with automatic step selection. At the same time, the methodical calculations show that these programs do
not guarantee the accuracy specified by the user (the difference often comes to three or four orders of mag�
nitude).

A promising method for solving such problems consists of introducing a new argument, namely, the arc
length of an integral curve in the �dimensional space . This method is proposed in
[2] and since 1993 has been developed in detail by E.B. Kuznetsov in a cycle of works, including the mono�
graph [3]. In particular, Kuznetsov proved the theorem stating that the introduction of the arc length pro�
vides the best conditionality of the Cauchy problem. Foreign publications on this topic are lacking (see [4]).

However, these works do not describe how to find the guaranteed error estimation of an obtained solu�
tion. Modern programs with automatic step selection do not make it possible to do this. The only way to
get a posteriori asymptotically exact error estimation is by thickening the net by using the Richardson
method [5,  6]. In this paper it is shown how to use the thickening of nets in the arc length method. Cal�
culations with guaranteed error estimations demonstrate that with the transition to the arc length, the
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harder the problem (the greater the stiffness of initial problem (1) or its ill conditionality), the larger the
gain in the accuracy. This gain can reach many orders of magnitude.

2. EQUATIONS

The arc length is determined by the relation 

(2)

Assuming that l is a new argument, we obtain instead of (1) the following system: 

(3)

The right�hand sides of (3)  do not depend on the new argument l; therefore, system (3) is autono�

mous. The relation  is true. Consequently, the right�hand sides of  are small and system (3)
is smooth even if system (1) was ill�conditioned or stiff. System (1) should be integrated to the instant T.
However, the value of  to which system (3) needs to be integrated is not known. Since  then

 is a monotonic increasing function of l. Hence, it is necessary to integrate (3) until condition
 holds.

Let us illustrate the idea of the transition to the arc length. Consider an equation of the following form:
(4)

For the sake of definiteness we take  and  The graph of the solution of Eq. (4) is pre�
sented in Fig. 1a: the function  decreases sharply until  is little different from a discontinuous func�
tion. After the transition to the arc length in accordance with formulas (3) (see Fig. 1b), the function 
instead of the jump has the slope of 45°. The almost discontinuous curve  becomes the almost broken
curve  We can see that it is much easier to integrate the latter curve numerically.

3. TEST PROBLEM

As a substantially difficult example from the set of tests in [1], we take the Van der Pol equation. It is
the equation of an oscillator with nonlinear viscosity

(5)

If  this is just a harmonic oscillator. If  the solution in the phase plane is also a closed curve, but
its form essentially differs from an ellipse. If σ � 1, problem (5) is difficult; here, the nature of the difficulty
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Fig. 1. (a) Graph of u(t); (b) the thick line is the graph of u(l) and the thin line is the graph of t(l).
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varies on different sections of the cycle. In some sections the problem is stiff, in others it is ill�conditioned,
and in the third sections in the spectrum of the Jacobian large imaginary parts appear. The profile of the
solution of Eq. (5) for  in the phase variables  is presented in Fig. 2.

For the numerical integration the following schemes were used. From the family of explicit schemes
we took the Runge–Kutta scheme of the second order of accuracy (ERK2) 

(6)

and the classical explicit Kutta scheme of the fourth order of accuracy (ERK4) 

(7)

Both of these schemes cannot possess the A�stability and are assumed to be unusable for stiff problems.
From the family of explicit–implicit Rosenbrock schemes, we took a single�stage scheme with a complex
coefficient of the second order of accuracy (CROS) [7]

(8)

and the analogous two�stage scheme of the fourth order of accuracy (CROS4) [8]. This two�stage scheme
is relatively bulky; therefore, we do not present it here. The CROS scheme is L2�stable and the CROS4
scheme is L4�stable. Such stability characteristics are unique: they must provide the rapid damping of stiff
components of a solution. In addition, these schemes are noniterative; hence, they are economical and
simple to implement.

From the family of fully implicit Runge–Kutta schemes we took the classic implicit Euler scheme of
the first order of accuracy 

(9)

and the recursion inverse scheme of the second order of accuracy [9]

(10)
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Fig. 2. Profile of the solution of Eq. (5) for σ = 100.
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These schemes are also L1�stable and L2�stable, respectively. Moreover, they are the most reliable
schemes for solving stiff problems, due to the Newtonian iterations until convergence.

The calculations were made for argument t and for argument l on a sequence of uniform nets recur�
rently thickening twice. The exact solution of problem (5) is not expressed in elementary functions.
Hence, the accuracy can only be checked by comparing the numerical solutions on pairs of neighboring
nets. We mark the coinciding nodes of such nets with subscript n. The values of the net solutions on the

first and second (more detailed) nets we denote by  and  (for definiteness we take velocity v, because
its behavior is more important for the problem in question). It is convenient to use the following analog of
the Hilbert norm: 

(11)

Outside the sum we have the conventional Richardson factor, where p is the order of accuracy of a scheme.
The summation over n is produced by one cycle. We can consider δ as a mean�root square relative error.

3.1. Comparing the Schemes

The schemes were compared for  this is considered to be quite a difficult problem (at all times
it was taken ω = 1). Calculations with a large step were impossible: the closure of a cycle did not occur in
any of the schemes. Therefore, it was necessary to check the availability of the closure visually. The results
of calculating the error are presented in Fig. 3. Here, on the abscissa the numbers of nodes for one cycle
for argument t and for argument l are plotted. Let us discuss these results.

Each curve has a good straight (regular) segment, whose slope corresponds to the theoretical order of
accuracy of a scheme. This demonstrates that the Richardson method is applicable, so that the obtained
error estimates are asymptotically exact. Hence, various schemes can be reliably compared.

The upper line is the confluence of three curves for schemes of the second order in argument t. At first
sight this seems strange: explicit and implicit schemes give the same accuracy, although explicit schemes
are said to be bad for stiff problems. The reason is that (5) is not a pure stiff problem. In (5), sections of
the ill conditionality and the complexity of the spectrum of the Jacobian matrix are longer than sections
of the actual stiffness. In contrast, implicit schemes are efficient for pure stiff problems.

The third curve corresponds to the same schemes of the second order of accuracy, but in argument l.
These schemes also give almost identical results. However, here the error is ~106 times smaller than in
argument t. In this case, if we require the identical accuracy in the calculations, then it is necessary to take
nodes along the arc length so that their number is smaller by a factor of ~103 (since these are schemes of
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Fig. 3. Problem (5) for σ = 100. Black markers for argument t and light markers for the argument l; small squares for both
ERK schemes, circles for both CROS schemes, and triangles for the recursion scheme.
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the second order of accuracy). This clearly shows that integrating over the arc length can give a sufficient
quantitative gain.

For schemes of the fourth order the conclusions are qualitatively analogous. Here, curves for explicit
and implicit schemes differ only slightly. The explicit Kutta scheme is just more accurate than the CROS4
scheme due to small coefficient in the remainder term. The difference in the accuracy for the identical
numbers of nodes in the arguments t or l is ~105; this is somewhat less than for schemes of the second order.
The labor input for identical accuracy differs by a factor of ~18. However, we cannot conclude that the arc
length method is less useful for schemes of the fourth order. It is evident that schemes of the fourth order
in  make it possible to attain the highest possible accuracy, namely, the accuracy of the rounding error (the
break in the graph with the transition in a horizontal line).

3.2. Effect of the Stiffness

The effect of the stiffness is illustrated only by one explicit Kutta scheme of the fourth order (by the
other schemes we have analogous results). In the calculations the values of the parameter from  to

 were taken. The first and the last values correspond to soft and very stiff problems, respectively.
The results are presented in Fig. 4.

The difficulty of the problem is attested by the minimum number of nodes N whereby the closure of a
cycle can be obtained. For  we have  for  we have  for  we have

 and for  we have  This indicates the difficulty of the problem for 
All curves (even for the largest σ = 1000) have straight regular segments. Their slopes correspond to the

theoretical order of accuracy  If  the transition from t to l gives almost no gain. If  the
gain of using the arc length is ~10 times. If σ = 100, then the gain comprises ~105 times, whereas if σ =
1000, then the gain is ~109 times. The greater the stiffness, the larger the gain in the accuracy.

Hence, the arc length method makes it possible to confidently use the thickening of a net and estimat�
ing the accuracy according to Richardson even for very stiff problems. In this case, we have a great gain in
the accuracy compared to integrating with respect to time.

4. HYPERSTIFFNESS

For the Van der Pol equation the characteristic stiffness constant is σ. According to the popular opin�
ion, the problem with σ = 100 is already sufficiently stiff and the problem with σ = 1000 is very stiff. In
most foreign tests, the characteristic stiffness parameter rarely exceeds 104. At the same time, there exist
important classes of problems in which the stiffness parameter can exceed 1010. For example, a problem
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of this kind is the problem of chemical kinetics, since rates of chemical reactions can differ by many orders
of magnitude. Such problems can be called hyperstiff (although it is more correct to call them hyperdiffi�
cult, since they include processes of ultrafast decay, as well as processes of very fast growth). They place
much heavier demands on the reliability of the numerical methods.

We consider the arising difficulties by using the classic Dahlquist test with a very large constant

(12)
The exact solution of this problem is  it is a positive function, which decreases very rapidly
almost stepwise. If we go to the arc length, then (12) is replaced by the system

(13)

The solution of this problem for λ � 1 is accurately described by the broken lines 

(14)

This solution is much like the functions presented in Fig. 1. Let us require that the method gives a good
solution of problem (12) with step τ � 1/λ.

The Dahlquist problem for the independent variable t is successfully solved by using the well�known
Rosenbrock, Rosenbrock–Wanner, and other methods [1]. However, in the transition to the arc length
certain qualitative features of these methods (the monotonicity and the positiveness of the solution) are
not retained. This is easily demonstrated by the numerical examples. Let us take the step in the arc length

 such that the general number of steps N= 20. We describe the results of the calculations by using
various implicit schemes.

(i) Implicit Euler scheme (9), in which the implicit algebraic system is solved by using Newtonian iter�
ations, is said to be the most reliable one. These calculations were done with the difference computation
of the Jacobian, as well as with analytical formulas. In both cases the calculations were well done to 
then, the Newtonian iterations ceased to converge. Newtonian iterations in hyperstiff problems often do
not converge on any implicit schemes. Hence, it is appropriate to use such schemes only for moderately
stiff problems, in which the difficulty of a problem is associated not so much with the stiffness but with the
nonlinearity of the problem.

(ii) It is assumed that among explicit–implicit (i.e., noniterative) schemes, the single�stage purely
implicit Rosenbrock scheme is most reliable. It can be obtained from the CROS scheme (8), if we place 1
outside the Jacobian matrix instead of the parameter  One computation by such a scheme was
done with the difference calculation of the Jacobian matrix and with 64�bit numbers. This calculation was
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excellent up to  here,  monotonically decreased and remained positive. However, upon the further
increase of l, we saw that  began to alternately take values of different signs at the level of ~10–5. In this
case,  increased very slightly, while remaining close to 0 instead of approaching 1 (see Fig. 5). It was
assumed that such behavior is related to rounding errors.

In order to check this assumption, the analogous calculation with a 128�bit numbers was made. The
results for  dramatically improved. Here,  still remained alternating, but at a much smaller level
(approximately ±10–20 and less). Therewith,  increased in accordance with exact solution (14). All this
confirms the hypothesis for the effect of rounding errors.

Still better results are obtained if the Jacobian matrix is found not by difference computations but by
using exact formulas. The Jacobian matrix for problem (13) has the form 

(15)

In this case, even for 64�bit calculations excellent results are realized. Here,  monotonically decrease on
the whole interval. For  the decrease is linear in accordance with exact solution (14). For   are

very small and decrease in a geometric progression with ratio  Such behavior of a numerical
solution can be considered as the standard behavior.

(iii) For the CROS scheme (8) with the difference calculation of the Jacobian matrix, the results are
almost indistinguishable from the above�described results both of the 64�bit calculations and of the 128�bit
calculations. However, with the analytical calculation of the Jacobian matrix and with the 64�bit calculations
the results are somewhat worse than the standard results: for  the numerical solution becomes neg�

ative,  and then remains negative, while rapidly decreasing in magnitude. This shows the
slightly lower reliability of the CROS scheme even for the simplest Dahlquist test. For more difficult prob�
lems this effect can be stronger.

5. CHEMICAL KINETICS

Hyperstiff problems include tasks that describe changes in the concentrations of substances during
chemical reactions: problems of chemical kinetics. In such problems both slow and very fast chemical
reactions usually take place at the same time. In addition, practical problems bring about systems of equa�
tions of large dimensionality. Let us present a meaningful example.

5.1. Problem Statement

Consider a test from [11], which is taken from [12]. In the original work, burning a natural gas in air is
described; here, the natural gas is methane with sulfur pollutions. In the test set [11] not a complete sys�
tem, but only a part of it is presented; this part is responsible for the emission of harmful components in
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the atmosphere and involves 25 chemical equations and 20 components. The system has canonical form
(1). The right�hand sides of the system are presented as follows: 

(16)

Expressions for the auxiliary variables  and the constants of reactions  are presented in Tables 1 and 2.
The initial data are taken at the end of the main combustion and correspond to the afterburning: 

(17)

For the interval of integrating with respect to time we take 
Figure 6 shows the graphs of changes in some concentrations. We note that the scales of these concen�

trations are widely different.

5.2. Requirements for Difference Schemes

The explicit Runge–Kutta schemes proved to be unsuitable for solving such problems. When integrating
with respect to time the calculations fall apart at the initial steps even with the very small steps ht ~ 10–5: the
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values of the concentrations increase in magni�
tude and exceed the numbers that can be repre�
sented on a computer.

On transition to the arc length the nature of
the difficulties changes. The first step after the
initial approximation gives a plausible solution.
However, at subsequent steps, time  barely
grows. Apparently, the difficulties are explained
by the fact that the explicit Runge–Kutta
schemes are nonmonotonic. The calculated
graphs of the concentration become sawtoothed
analogously to the graphs presented in Section 4
(see Fig. 5). Here, the amplitude of a saw can
be some orders of magnitude greater than the
exact values of the concentrations. As a conse�
quence of this, the concentrations can even
take negative values, which are chemically
meaningless. Large concentrations lead to large
values of the right�hand sides  They are
included in the denominator of the right�hand
side F for function  As a result, this right�

t

( ).f u

( ).t l
hand side is found to be vanishingly small and the calculated t barely grows from step to step.

This analysis demonstrates that in order to solve such problems it is necessary to use monotonic
schemes. The monotonic schemes [10] include CROS schemes (8), the implicit Euler scheme (9), and the
generally optimum inverse Runge–Kutta schemes [9]. When integrating both with respect to t and with
respect to l, they give a good qualitative behavior of the numerical solution with no saws. These consider�
ations are true in calculations with infinite digit capacity. If the digit capacity of calculations is finite, then
one detail arises. It is impossible to carry out calculations with very different scales of constants of reac�
tions with 32�digit numbers: rounding errors become comparable to the solution itself. With 64�digit num�
bers, good calculations can be done if the Jacobian matrix of the system is presented analytically. However,
if the Jacobian matrix is found by difference calculations, 128�digit numbers are to be used for it (the
obtained linearized system can also be solved with 64�digit numbers). This detail is especially sufficient if
the argument is the arc length.

Balances. In the chemical reactions, molecules are formed and decomposed, but in this case the total
number of atoms of each chemical element remains fixed. For a good qualitative behavior of a numerical
solution, it is necessary that in the numerical calculation the number of atoms of each sort is also kept.
Such balance relations are the first integrals of a system of chemical equations.

Each equation of a balance can be presented in the following way. Assume that each molecule  con�

tains  atoms of a certain element. Then the total number of atoms in a system  is independent

of time. One can readily see that here  the number of atoms that come from some molecules

is equal to the number of atoms that go to other molecules. It is convenient to present these relations in a
matrix form. Assume that we have a column vector composed of components  it can be considered as
a rectangular matrix. Then the exact solutions fit the following balance relations: 

(18)

where the multiplication of row  by column f or u is performed according to the rules of matrix multi�
plication. The number of various columns α is equal to the number of various chemical elements included
in the chemical reactions; the initial system must fit all these balances. Let us demonstrate that the
schemes used for the calculations in this work maintain the chemical balances of the system.

Theorem 1. Runge–Kutta schemes maintain the chemical balance of the system.
Proof. It is well known that formulas for the s�stage Runge–Kutta methods are presented in the general

form as follows: 

(19)
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Fig. 6. Graphs of some concentrations of problem (16).
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We multiply from the left the first expression by  

(20)

Note that the expression for  is f of the shifted argument (see the second expression in (19)); here, this

shift is fixed at each stage. Expression (18) must hold for any argument f; therefore,  Hence, the

whole sum in the right�hand side of expression (20) becomes zero. Consequently,  i.e., the
chemical balance of the system is kept. 

Note: The proof holds for the explicit, as well as for the diagonally implicit and fully implicit Runge–
Kutta schemes (in particular, inverse ones [9]).

Theorem 2. Single�stage Rosenbrock schemes maintain the chemical balance of the system.
Proof. The proof is nontrivial in contrast to the proof of Theorem 1. In the general case, the formulas

for the family of single�stage Rosenbrock schemes have the following form: 

(21)

Here, E is a unit matrix, while a and b are the scalar parameters of a scheme. Let us multiply from the left

the first equation from (21) by the row 

(22)
Removing the brackets in the left�hand side, we get

(23)

From the condition  it follows that  Hence, we have

(24)

Let us multiply from the left the second equation from (21) by the row 

(25)

In view of (24), we get  i.e., the chemical balance of the system is maintained. 
Note: The proof holds for any value of parameter a (including a complex value) and the CROS scheme (8).
Generalization. Theorem 2 is generalized on the multistage Rosenbrock schemes, including schemes

with complex coefficients.
In this way, the Runge–Kutta and Rosenbrock schemes fit the balance relation. Consequently, they are

conservative in the sense given to this term by A.A. Samarskii.
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Fig. 7. Calculating for problem (16) by the CROS scheme on a series of thickening nets; (�) integrating with respect to
time and (�) integrating with respect to the arc length.
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In addition to difference schemes that maintain the chemical balance of a system, the same feature is
possessed by the transform considered here of the transition to the arc length (3). We formulate this state�
ment in the form of a theorem.

Theorem 3. The transition to the arc length maintains the chemical balance of the system.
Proof. In order to prove this theorem, it is necessary to demonstrate that if for the initial problem

 then after the transition to the arc length, we shall have  Then schemes that keep the bal�
ance for the initial Cauchy problem will also maintain the chemical balance after the transition to the arc
length. In fact, 

(26)

Since the root in the denominator of the fraction is the same for all components and  then the

entire expression  as well. 

5.3. Results of Calculations

Calculations of test problem (16) were made both for argument t and for argument l. In both cases good
results are obtained by using the CROS scheme of the second order of accuracy; here, the Jacobian matrix
was found by the difference calculations by using 128�digit numbers (the analytical calculations even for
argument t are too cumbersome and require the use of a symbolic�computation program, while for argu�
ment l, the analytical calculations are practically nonimplementable). The other calculations were made
with 64�digit numbers; in solving the auxiliary linear system this resulted in significant time savings.

The accuracy control was exerted by a series of calculations on the sequence of nets recurrently thick�
ening twice. In this case, a posteriori asymptotically exact error estimation by the Richardson method was
performed (see [5]). In Fig. 7 the dependence of the error on the number of nodes of the net is presented
in the log�log scale. The good straight segment, whose slope 2 corresponds to the theoretical order of
accuracy of a scheme, demonstrates that the Richardson method is applicable here.

It is seen that markers for arguments t and l lay down practically on a common straight line. Hence, in
this problem the transition to the arc length gives no gain in accuracy as compared to argument t. This
demonstrates that in problems of chemical kinetics, sections of the decay of components, as well as sec�
tions of the fast growth (of the ill conditionality), present equal difficulty. Apparently, in any problem of
chemical kinetics with very different scales of constants of reactions, the transition to the arc length does
not result in a gain.

Recommendations. It is appropriate to solve real problems of chemical kinetics by taking time t as an
argument and using the single�stage CROS scheme (it is also possible to use the two�stage CROS4 scheme).
In this case, it is necessary to make the calculations with numbers of not less than 64 digits and to find the
Jacobian matrix by the difference method with 128�digit numbers.

6. APPLICATION DOMAINS OF THE METHOD

The use of the arc length method leads to a system of ODEs with significantly more cumbersome right�
hand sides than in the initial system. The higher the order of a system the stronger this complication,
which is required even in the case where explicit schemes are used. If implicit schemes are used, then it is
necessary to calculate the Jacobian matrix of the right�hand sides; this further complicates the solution
(makes it much more difficult). With these considerations let us discuss classes of problems for which the
arc length method is effective or ineffective. It is clear that the method in question is highly effective for
ill�conditioned systems of ODEs of not too high an order, since for such problems explicit schemes are
usable. In particular, this includes problems with a singularity. 

For systems of ODEs in which the stiffness strongly prevails over other types of the complexity, it is nec�
essary to use implicit schemes. The same is related to problems in which the stiffness and the ill condition�
ality are almost equal (problems of chemical kinetics belong to this category). For such systems, making
a step along the arc length is a considerably more cumbersome procedure than integrating with respect to
time. In this case the arc length method can be ineffective and better results will be obtained by using
Rosenbrock schemes with complex coefficients of argument t.

Attempts have been made to use the arc length for the one�dimensional partial differential equations
solved by the method of straight lines [4]. The prospects for this avenue are poor. In fact, modern�day cal�
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culations must include a posteriori error estimation, which is performed by thickening the nets in x and t.
However, thickening a net in x increases the order of the system of ODEs and at the same time the volume
of computations of each right�hand side. The full calculation can become too cumbersome even for
explicit schemes and unacceptable for implicit ones. For two�dimensional partial differential equations
this method is obviously ineffective.

However, the above�specified domains of the prospects of the method in question have many important
applications; this makes the complications that arise in the case of the transition to the arc length, reasonable.
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